Self-assembly of the simple cubic lattice with an isotropic potential

被引:57
作者
Rechtsman, Mikael C. [1 ]
Stillinger, Frank H.
Torquato, Salvatore
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[4] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[5] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[6] Princeton Univ, Princeton Ctr Theoret Phys, Princeton, NJ 08544 USA
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 02期
关键词
D O I
10.1103/PhysRevE.74.021404
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures [M. C. Rechtsman , Phys. Rev. Lett. 95, 228301 (2005); Phys. Rev. E 73, 011406 (2006)], we present an isotropic pair potential V(r) for a three-dimensional many-particle system whose classical ground state is the low-coordinated simple cubic lattice. This result is part of an ongoing pursuit by the authors to develop analytical and computational tools to solve statistical-mechanical inverse problems for the purpose of achieving targeted self-assembly. The purpose of these methods is to design interparticle interactions that cause self-assembly of technologically important target structures for applications in photonics, catalysis, separation, sensors, and electronics. We also show that standard approximate integral-equation theories of the liquid state that utilize pair correlation function information cannot be used in the reverse mode to predict the correct simple cubic potential. We report in passing optimized isotropic potentials that yield the body-centered-cubic and simple hexagonal lattices, which provide other examples of non-close-packed structures that can be assembled using isotropic pair interactions.
引用
收藏
页数:7
相关论文
共 15 条
[1]   THEORETICAL CONFIRMATION OF THE HIGH-PRESSURE SIMPLE CUBIC PHASE IN CALCIUM [J].
AHUJA, R ;
ERIKSSON, O ;
WILLS, JM ;
JOHANSSON, B .
PHYSICAL REVIEW LETTERS, 1995, 75 (19) :3473-3476
[2]   Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters [J].
Andres, RP ;
Bielefeld, JD ;
Henderson, JI ;
Janes, DB ;
Kolagunta, VR ;
Kubiak, CP ;
Mahoney, WJ ;
Osifchin, RG .
SCIENCE, 1996, 273 (5282) :1690-1693
[3]  
Donohue J, 1982, STRUCTURES ELEMENTS
[4]  
Enderlein R., 1997, FUNDAMENTALS SEMICON
[5]   EXISTENCE OF A PHOTONIC GAP IN PERIODIC DIELECTRIC STRUCTURES [J].
HO, KM ;
CHAN, CT ;
SOUKOULIS, CM .
PHYSICAL REVIEW LETTERS, 1990, 65 (25) :3152-3155
[6]   CONSEQUENCES OF THE BALANCE BETWEEN THE REPULSIVE AND ATTRACTIVE FORCES IN DENSE, NONASSOCIATED LIQUIDS [J].
LAVIOLETTE, RA ;
STILLINGER, FH .
JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (07) :3335-3343
[7]   Experimental measurement of the photonic properties of icosahedral quasicrystals [J].
Man, WN ;
Megens, M ;
Steinhardt, PJ ;
Chaikin, PM .
NATURE, 2005, 436 (7053) :993-996
[8]   Dense packing and symmetry in small clusters of microspheres [J].
Manoharan, VN ;
Elsesser, MT ;
Pine, DJ .
SCIENCE, 2003, 301 (5632) :483-487
[9]   Designed interaction potentials via inverse methods for self-assembly [J].
Rechtsman, M ;
Stillinger, F ;
Torquato, S .
PHYSICAL REVIEW E, 2006, 73 (01)
[10]   Optimized interactions for targeted self-assembly: Application to a honeycomb lattice [J].
Rechtsman, MC ;
Stillinger, FH ;
Torquato, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)