GLOBAL REGULARITY IN ORLICZ-MORREY SPACES OF SOLUTIONS TO NONDIVERGENCE ELLIPTIC EQUATIONS WITH VMO COEFFICIENTS

被引:0
作者
Guliyev, Vagif S. [1 ,2 ,3 ]
Ahmadli, Aysel A. [4 ]
Omarova, Mehriban N. [3 ,5 ]
Softova, Lubomira [6 ]
机构
[1] Ahi Evran Univ, Dept Math, TR-40100 Kirsehir, Turkey
[2] Rudn Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
[3] Inst Math & Mech, AZ-1141 Baku, Azerbaijan
[4] Dumlupinar Univ, Dept Math, TR-40100 Kytahya, Turkey
[5] Baku State Univ, AZ-1141 Baku, Azerbaijan
[6] Univ Salerno, Dept Math, Fisciano, Italy
关键词
Generalized Orlicz-Morrey spaces; Calderon-Zygmund integrals; commutators; VMO; elliptic equations; Dirichlet problem; SINGULAR INTEGRAL-OPERATORS; MAXIMAL OPERATOR; DIRICHLET PROBLEM; COMMUTATORS; BOUNDEDNESS; HARDY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show continuity in generalized Orlicz-Morrey spaces M-Phi,M-phi (R-n) of sublinear integral operators generated by Calderon-Zygmund operator and their commutators with BMO functions. The obtained estimates are used to study global regularity of the solution of the Dirichlet problem for linear uniformly elliptic operator L = Sigma(3)(i,j=1) a(ij)(x)D-ij with discontinuous coefficients. We show that Lu is an element of M-Phi,M-phi implies the second-order derivatives belong to M-Phi,M-phi.
引用
收藏
页数:24
相关论文
共 51 条
  • [1] ON BMO REGULARITY FOR LINEAR ELLIPTIC-SYSTEMS
    ACQUISTAPACE, P
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 161 : 231 - 269
  • [2] Akbulut A, 2012, MATH BOHEM, V137, P27
  • [3] [Anonymous], 1991, Ric. Mat.
  • [4] [Anonymous], 1956, Portugal. Math
  • [5] [Anonymous], 1994, THESIS
  • [6] [Anonymous], 2008, Banach and Function Spaces II
  • [7] [Anonymous], 1961, Convex functions and Orlicz spaces
  • [8] [Anonymous], 1991, Weighted Inequalities in Lorentz and Orlicz Spaces
  • [9] [Anonymous], 2015, MONOGRAPHS RES NOTES
  • [10] Bennett C., 1988, Interpolation of operators