The role of the fatty acid β-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis:: molecular characterization of the fadBA operon from P-oleovorans and of the enoyl-CoA hydratase genes phaJ from P-oleovorans and Pseudomonas putida

被引:69
|
作者
Fiedler, S [1 ]
Steinbüchel, A [1 ]
Rehm, BHA [1 ]
机构
[1] Univ Munster, Inst Mikrobiol, D-48149 Munster, Germany
关键词
fatty acid; beta-oxidation; multienzyme complex; 3-Re enoyl-CoA hydratase; pseudomonads; polyhydroxyalkanoate biosynthesis; epimerase;
D O I
10.1007/s00203-002-0444-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In order to investigate the role of the putative epimerase function of the (3-oxidation multienzyme complex (FadBA) in the provision of (R)-3-hydroxyacyl-CoA thioesters for medium-chain-length polyhydroxyalkanoate (PHA(MCL)) biosynthesis, the fadBA(Po) operon of Pseudomonas oleovorans was cloned and characterized. The fadBA(Po) operon and a class-II PHA synthase gene of Pseudomonas aeruginosa were heterologously co-expressed in Escherichia coli to determine whether the putative epimerase function of FadBA(Po) has the ability to provide precursors for PHA accumulation in a non-PHA-accumulating bacterium. Cultivation studies with fatty acids as carbon source revealed that FadBA(Po) did not mediate PHA(MCL) biosynthesis in the E. coli wild-type strain harboring a PHA synthase gene. However, PHA accumulation was strongly impaired in a recombinant E. coli fadB mutant, which harbored a PHA synthase gene. These data indicate that in pseudomonads FadBA does not possess the inherent property, based on a putative epimerase function, to provide the (R)-enantiomer of 3-hydroxyacyl-CoA efficiently and that other linking enzymes are required to efficiently channel intermediates of beta-oxidation towards PHA(MCL) biosynthesis. However, the phaJ gene from P. oleovorans and from Pseudomonas putida, both of which encoded a 3-Re enoyl-CoA hydratase, was identified. The co-expression of phaJ(Po/Pp), with either a class-II PHA synthase gene or the PHA synthase gene from Aeromonas punctata in E. coli revealed that PhaJ(Po/Pp) mediated biosynthesis of either PHA(MCL), contributing to about 1 % of cellular dry mass, or of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), contributing to 3.6% of cellular dry mass, when grown on decanoate. These data indicate that FadBA(Po) does not mediate the provision of (R)-3-hydroxyacyl-CoA, which resembles FadBA of non-PHA-accumulating bacteria, and that 3-Re enoyl-CoA hydratases are required to divert intermediates of fatty acid beta-oxidation towards PHA biosynthesis in P. oleovorans.
引用
收藏
页码:149 / 160
页数:12
相关论文
empty
未找到相关数据