GENERALIZED JORDAN TRIPLE HIGHER DERIVATIONS ON SEMIPRIME RINGS

被引:8
作者
Wei, Feng [1 ]
Xiao, Zhankui [1 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized Jordan triple higher derivation; semi-prime ring; PRIME-RINGS;
D O I
10.4134/BKMS.2009.46.3.553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that every generalized Jordan triple higher derivation on a 2-torsion free semiprime ring is a generalized higher derivation. This extend the main result of [9] to the case of a semiprime ring.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 50 条
[21]   Orthogonal generalized (σ, τ)-derivations of semiprime rings [J].
Oznur Gölbaşi ;
Neşet Aydin .
Siberian Mathematical Journal, 2007, 48 :979-983
[22]   On Derivations in Semiprime Rings [J].
Ali, Shakir ;
Huang Shuliang .
ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (06) :1023-1033
[23]   Jordan f-Derivations on Prime and Semiprime Rings [J].
Leerawat, Utsanee ;
Toka, Patipat .
THAI JOURNAL OF MATHEMATICS, 2024, 22 (01) :85-91
[24]   Generalized derivations with nilpotent values in semiprime rings [J].
Liu, Cheng-Kai .
QUAESTIONES MATHEMATICAE, 2024, 47 (06) :1195-1212
[25]   Generalized derivations with nilpotent values on semiprime rings [J].
Wei, F .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (03) :453-462
[26]   IDENTITIES WITH MULTIPLICATIVE GENERALIZED ( α, α )-DERIVATIONS OF SEMIPRIME RINGS [J].
Sandhu, Gurninder Singh ;
Ayran, Ayse ;
Aydin, Neset .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (03) :365-382
[27]   On generalized derivations in semiprime rings involving anticommutator [J].
Ashraf, Mohammad ;
Pary, Sajad Ahmad ;
Raza, Mohd Arif .
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (03) :587-598
[28]   Generalized Derivations with Nilpotent Values on Semiprime Rings [J].
Feng WEI Department of MathematicsBeijing Institute of TechnologyBeijing PRChina .
Acta Mathematica Sinica(English Series), 2004, 20 (03) :453-462
[29]   STUDY OF (σ, τ)-GENERALIZED DERIVATIONS WITH THEIR COMPOSITION OF SEMIPRIME RINGS [J].
Fosner, Ajda ;
Atteya, Mehsin Jabel .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (04) :535-558
[30]   Generalized Derivations with Nilpotent Values on Semiprime Rings [J].
Feng Wei .
Acta Mathematica Sinica, 2004, 20 :453-462