Hardness of approximation for vertex-connectivity network design problems

被引:69
作者
Kortsarz, G [1 ]
Krauthgamer, R
Lee, JR
机构
[1] Rutgers State Univ, Dept Comp Sci, Camden, NJ 08102 USA
[2] Int Comp Sci Inst, Berkeley, CA 94704 USA
[3] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
关键词
approximation algorithms; hardness of approximation; vertex connectivity; survivable network design; connectivity augmentation;
D O I
10.1137/S0097539702416736
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the survivable network design problem (SNDP), the goal is to find a minimum-cost spanning subgraph satisfying certain connectivity requirements. We study the vertex-connectivity variant of SNDP in which the input specifies, for each pair of vertices, a required number of vertex-disjoint paths connecting them. We give the first strong lower bound on the approximability of SNDP, showing that the problem admits no efficient 2log(1-epsilon) n ratio approximation for any fixed epsilon>0, unless NPsubset of or equal toDTIME(n(polylog)(n)). We show hardness of approximation results for some important special cases of SNDP, and we exhibit the first lower bound on the approximability of the related classical NP-hard problem of augmenting the connectivity of a graph using edges from a given set.
引用
收藏
页码:704 / 720
页数:17
相关论文
共 35 条
[1]  
Arora S., 1996, APPROXIMATION ALGORI
[2]   A 2-approximation algorithm for finding an optimum 3-vertex-connected spanning subgraph [J].
Auletta, V ;
Dinitz, Y ;
Nutov, Z ;
Parente, D .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 32 (01) :21-30
[3]   Approximating minimum-size k-connected spanning subgraphs via matching [J].
Cheriyan, J ;
Thurimella, R .
SIAM JOURNAL ON COMPUTING, 2000, 30 (02) :528-560
[4]   On rooted node-connectivity problems [J].
Cheriyan, J ;
Jordán, T ;
Nutov, Z .
ALGORITHMICA, 2001, 30 (03) :353-375
[5]  
CHERIYAN J, 2002, 34 ANN ACM S THEOR C, P306
[6]  
Csaba B, 2002, SIAM PROC S, P74
[7]  
Czumaj A, 1999, PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P281
[8]  
Diestel R., 2000, GRAPH THEORY
[9]   A 3-approximation algorithm for finding optimum 4,5-vertex-connected spanning subgraphs [J].
Dinitz, Y ;
Nutov, Z .
JOURNAL OF ALGORITHMS, 1999, 32 (01) :31-40
[10]  
DINUR I, 1999, TR99015 EL C COMP CO