Invariant subspaces of the harmonic Dirichlet space with large co-dimension

被引:0
作者
Ross, WT
机构
关键词
Dirichlet spaces; invariant subspaces; co-dimension; Bergman spaces;
D O I
10.1090/S0002-9939-96-03243-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we comment on the complexity of the invariant subspaces (under the bilateral Dirichlet shift f --> zeta f) of the harmonic Dirichlet space D. Using the sampling theory of Seip and some work on invariant subspaces of Bergman spaces, we will give examples of invariant subspaces F subset of D with dim(F/zeta F) = n, n is an element of N boolean OR{infinity}. We will also generalize this to the Dirichlet classes D-alpha, 0 < alpha < infinity, as well as the Besov classes B-p(alpha), 1 < p < infinity, 0 < alpha < 1.
引用
收藏
页码:1841 / 1846
页数:6
相关论文
共 14 条
  • [1] ALEMAN A, IN PRESS CANAD J MAT
  • [2] BERCOVICI H, 1985, CBMS REGIONAL C SERI, V56
  • [3] HASUMI M, 1965, CAN J MATH, V22, P643
  • [4] HEDENMALM H, ZERO SEQUENCES INVAR
  • [5] HEDENMALM PJH, 1993, J REINE ANGEW MATH, V443, P1
  • [6] HELSON H, 1964, LECTURES INVARIANT S
  • [7] KHRUSHCHEV S, 1982, RUSS MATH SURV, V37, P61
  • [8] MAKAROV NG, 1982, SOV MATH DOKL, V25, P191
  • [9] MAKAROV NG, 1984, MATH USSR SB, V47, P1
  • [10] Malgrange B., 1967, Ideals of Differentiable Functions