Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation

被引:56
作者
Ago, Hiroki [1 ]
Okada, Susumu [2 ]
Miyata, Yasumitsu [3 ]
Matsuda, Kazunari [4 ]
Koshino, Mikito [5 ]
Ueno, Kosei [6 ]
Nagashio, Kosuke [7 ]
机构
[1] Kyushu Univ, Global Innovat Ctr, Fukuoka 8168580, Japan
[2] Univ Tsukuba, Grad Sch Pure & Appl Sci, Ibaraki, Japan
[3] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo, Japan
[4] Kyoto Univ, Inst Adv Energy, Kyoto, Japan
[5] Osaka Univ, Dept Phys, Osaka, Japan
[6] Hokkaido Univ, Fac Sci, Dept Chem, Sapporo, Hokkaido, Japan
[7] Univ Tokyo, Dept Mat Engn, Tokyo, Japan
关键词
2; 5 dimensional materials; 2D heterostructures; van der Waals interaction; moire superlattice; interlayer nanospace; intercalation; bilayer graphene; transition metal dichalcogenide; hexagonal boron nitride; multidimensional materials; HEXAGONAL BORON-NITRIDE; DER-WAALS HETEROSTRUCTURES; LARGE-AREA; HIGH-QUALITY; EPITAXIAL-GROWTH; SINGLE-CRYSTAL; INTERCALATION COMPOUNDS; 2-DIMENSIONAL MATERIALS; CORRELATED STATES; MONOLAYER MOS2;
D O I
10.1080/14686996.2022.2062576
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The past decades of materials science discoveries are the basis of our present society - from the foundation of semiconductor devices to the recent development of internet of things (IoT) technologies. These materials science developments have depended mainly on control of rigid chemical bonds, such as covalent and ionic bonds, in organic molecules and polymers, inorganic crystals and thin films. The recent discovery of graphene and other two-dimensional (2D) materials offers a novel approach to synthesizing materials by controlling their weak out-of-plane van der Waals (vdW) interactions. Artificial stacks of different types of 2D materials are a novel concept in materials synthesis, with the stacks not limited by rigid chemical bonds nor by lattice constants. This offers plenty of opportunities to explore new physics, chemistry, and engineering. An often-overlooked characteristic of vdW stacks is the well-defined 2D nanospace between the layers, which provides unique physical phenomena and a rich field for synthesis of novel materials. Applying the science of intercalation compounds to 2D materials provides new insights and expectations about the use of the vdW nanospace. We call this nascent field of science '2.5 dimensional (2.5D) materials,' to acknowledge the important extra degree of freedom beyond 2D materials. 2.5D materials not only offer a new field of scientific research, but also contribute to the development of practical applications, and will lead to future social innovation. In this paper, we introduce the new scientific concept of this science of '2.5D materials' and review recent research developments based on this new scientific concept.
引用
收藏
页码:275 / 299
页数:25
相关论文
共 193 条
[31]   Vapor Phase Selective Growth of Two-Dimensional Perovskite/WS2 Heterostructures for Optoelectronic Applications [J].
Erkilic, Ufuk ;
Solis-Fernandez, Pablo ;
Ji, Hyun Goo ;
Shinokita, Keisuke ;
Lin, Yung-Chang ;
Maruyama, Mina ;
Suenaga, Kazu ;
Okada, Susumu ;
Matsuda, Kazunari ;
Ago, Hiroki .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (43) :40503-40511
[32]   Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides [J].
Fang, Hui ;
Battaglia, Corsin ;
Carraro, Carlo ;
Nemsak, Slavomir ;
Ozdol, Burak ;
Kang, Jeong Seuk ;
Bechtel, Hans A. ;
Desai, Sujay B. ;
Kronast, Florian ;
Unal, Ahmet A. ;
Conti, Giuseppina ;
Conlon, Catherine ;
Palsson, Gunnar K. ;
Martin, Michael C. ;
Minor, Andrew M. ;
Fadley, Charles S. ;
Yablonovitch, Eli ;
Maboudian, Roya ;
Javey, Ali .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) :6198-6202
[33]   Full Energy Spectra of Interface State Densities for n- and p-type MoS2 Field-Effect Transistors [J].
Fang, Nan ;
Toyoda, Satoshi ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Nagashio, Kosuke .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (49)
[34]   Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure [J].
Feng, Zhihong ;
Chen, Buyun ;
Qian, Shuangbei ;
Xu, Linyan ;
Feng, Liefeng ;
Yu, Yuanyuan ;
Zhang, Rui ;
Chen, Jiancui ;
Li, Qianqian ;
Li, Quanning ;
Sun, Chongling ;
Zhang, Hao ;
Liu, Jing ;
Pang, Wei ;
Zhang, Daihua .
2D MATERIALS, 2016, 3 (03)
[35]   Tunable crystal symmetry in graphene-boron nitride heterostructures with coexisting moire superlattices [J].
Finney, Nathan R. ;
Yankowitz, Matthew ;
Muraleetharan, Lithurshanaa ;
Watanabe, K. ;
Taniguchi, T. ;
Dean, Cory R. ;
Hone, James .
NATURE NANOTECHNOLOGY, 2019, 14 (11) :1029-+
[36]   Geometric and electronic structures of two-dimensionally polymerized triptycene: covalent honeycomb networks comprising triptycene and polyphenyl [J].
Fujii, Yasumaru ;
Maruyama, Mina ;
Okada, Susumu .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (12)
[37]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923
[38]   Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction [J].
Furchi, Marco M. ;
Pospischil, Andreas ;
Libisch, Florian ;
Burgdoerfer, Joachim ;
Mueller, Thomas .
NANO LETTERS, 2014, 14 (08) :4785-4791
[39]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[40]   Advances in Graphene-Based Liquid Cell Electron Microscopy: Working Principles, Opportunities, and Challenges [J].
Ghodsi, Seyed Mohammadreza ;
Megaridis, Constantine M. ;
Shahbazian-Yassar, Reza ;
Shokuhfar, Tolou .
SMALL METHODS, 2019, 3 (05)