Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows

被引:82
作者
Adler, Amir [1 ,2 ,3 ,4 ,5 ,6 ]
Araya-Polo, Mauricio [7 ,8 ,9 ,10 ,11 ]
Poggio, Tomaso [2 ,12 ,13 ,14 ,15 ,16 ]
机构
[1] Braude Coll Engn, Elect Engn Dept, IL-2161002 Karmiel, Israel
[2] MIT, McGovern Inst Brain Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Ctr Brains Minds & Machines, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Deep Learning Solut, Royal Dutch Shell, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Minist Commun, Jerusalem, Israel
[6] NextWave Wireless Inc, Wi Fi Div, AT&T, San Diego, CA USA
[7] Total E&P RT, Houston, TX 77002 USA
[8] Rice Univ, Computat & Appl Math Dept, Houston, TX USA
[9] Shell Int E&P Inc, Geophys & Machine Learning Efforts, Tananger, Sola, Norway
[10] Repsol USA, Warrendale, PA USA
[11] Barcelona Supercomp Ctr, Kaleidoscope Project, Barcelona, Spain
[12] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[13] MIT, Comp Sci & Artificial Inelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[14] MIT, Ctr Biol & Computat Learning, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[15] McGovern Inst, Ctr Brains Minds & Machines, Cambridge, MA USA
[16] MIT Quest Intelligence, Cambridge, MA USA
关键词
Seismic measurements; Inverse problems; Earthquakes; Deep learning; Hydrocarbons; Hazards; Earth; Analytical models; Geophysical measurements; GENERATIVE ADVERSARIAL NETWORKS; WAVE-FORM INVERSION;
D O I
10.1109/MSP.2020.3037429
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Seismic inversion is a fundamental tool in geophysical analysis, providing a window into Earth. In particular, it enables the reconstruction of large-scale subsurface Earth models for hydrocarbon exploration, mining, earthquake analysis, shallow hazard assessment, and other geophysical tasks.
引用
收藏
页码:89 / 119
页数:31
相关论文
共 66 条
  • [1] Adler A., 2019, 81 EAGE C EXH 2019, V2019, P1, DOI [DOI 10.3997/2214-4609.201901512, 10.3997/2214-4609.201901512]
  • [2] Alfarraj M., 2019, SEG TECHNICAL PROGRA, P2298, DOI DOI 10.1190/SEGAM2019-3215902.1
  • [3] Alfarraj M., 2018, SEG INT EXP 88 ANN M, P2141, DOI DOI 10.1190/SEGAM2018-2995752.1
  • [4] [Anonymous], 2018, ARXIV180107232
  • [5] [Anonymous], 2018, SEG TECHNICAL PROGRA, DOI [DOI 10.1190/SEGAM2018-2998603.1, 10.1190/segam2018-2998603.1]
  • [6] Deep learning-driven velocity model building workflow
    Araya-Polo M.
    Farris S.
    Florez M.
    [J]. Leading Edge, 2019, 38 (11) : 872A1 - 872A9
  • [7] Araya-Polo Mauricio, 2018, Leading Edge, V37, P58, DOI 10.1190/tle37010058.1
  • [8] Assessing Accelerator-Based HPC Reverse Time Migration
    Araya-Polo, Mauricio
    Cabezas, Javier
    Hanzich, Mauricio
    Pericas, Miquel
    Rubio, Felix
    Gelado, Isaac
    Shafiq, Muhammad
    Morancho, Enric
    Navarro, Nacho
    Ayguade, Eduard
    Maria Cela, Jose
    Valero, Mateo
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2011, 22 (01) : 147 - 162
  • [9] ACOUSTIC IMPEDANCE LOGS COMPUTED FROM SEISMIC TRACES
    BECQUEY, M
    LAVERGNE, M
    WILLM, C
    [J]. GEOPHYSICS, 1979, 44 (09) : 1485 - 1501
  • [10] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828