Location-Aware Maintenance Strategies for Edge Computing Infrastructures

被引:8
作者
Souza, Paulo S. [1 ]
Ferreto, Tiago C. [1 ]
Rossi, Fabio D. [2 ]
Calheiros, Rodrigo N. [3 ]
机构
[1] Pontificia Univ Catolica Rio Grande do Sul, Sch Technol, BR-90619900 Porto Alegre, RS, Brazil
[2] Fed Inst Farroupilha, BR-97555000 Alegrete, Brazil
[3] Western Sydney Univ, Sch Comp Data & Math Sci, Parramatta, NSW 2000, Australia
关键词
Servers; Maintenance engineering; Delays; Bandwidth; Mathematical models; Wireless communication; Edge computing; update; maintenance;
D O I
10.1109/LCOMM.2022.3150243
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Efficient server maintenance and update is essential to prevent performance and security issues in edge computing environments. Despite many initiatives in maintenance planning, state-of-the-art approaches concentrate on carrying out updates in cloud data centers, ignoring aspects of the problem that are specific to the edge computing paradigm, such as user-location awareness. In this letter, we present two maintenance strategies, called Lamp and Laxus, that consider users' locations when performing migration decisions to avoid delay bottlenecks during edge servers maintenance. Results show that the proposed strategies can reduce maintenance time by 44.27% compared to existing strategies while effectively avoiding delay bottlenecks.
引用
收藏
页码:848 / 852
页数:5
相关论文
共 50 条
[41]   Probabilistic maintenance and optimization strategies for deteriorating civil infrastructures [J].
Frangopol, D. M. ;
Neves, L. C. .
Progress in Computational Structures Technology, 2004, :353-377
[42]   Supporting smart construction with dependable edge computing infrastructures and applications [J].
Kochovski, Petar ;
Stankovski, Vlado .
AUTOMATION IN CONSTRUCTION, 2018, 85 :182-192
[43]   Estimating Energy Consumption of Cloud, Fog, and Edge Computing Infrastructures [J].
Ahvar, Ehsan ;
Orgerie, Anne-Cecile ;
Lebre, Adrien .
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2022, 7 (02) :277-288
[44]   An Automated Pipeline for Advanced Fault Tolerance in Edge Computing Infrastructures [J].
Theodoropoulos, Theodoros ;
Makris, Antonios ;
Violos, John ;
Tserpes, Konstantinos .
2ND WORKSHOP ON FLEXIBLE RESOURCE AND APPLICATION MANAGEMENT ON THE EDGE, FRAME 2022, 2022, :19-24
[45]   Improving Efficiency of Edge Computing Infrastructures through Orchestration Models [J].
Bolla, Raffaele ;
Carrega, Alessandro ;
Repetto, Matteo ;
Robino, Giorgio .
COMPUTERS, 2018, 7 (02)
[46]   A Novel Blockchain Based Secured and QoS Aware IoT Vehicular Network in Edge Cloud Computing [J].
Ahmed, Adeel ;
Abdullah, Saima ;
Iftikhar, Saman ;
Ahmad, Israr ;
Ajmal, Siddiqa ;
Hussain, Qamar .
IEEE ACCESS, 2022, 10 :77707-77722
[47]   Latency-Aware Joint Task Offloading and Energy Control for Cooperative Mobile Edge Computing [J].
Fan, Weibei ;
Xiao, Fu ;
Pan, Yao ;
Chen, Xiaobai ;
Han, Lei ;
Yu, Shui .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2025, 18 (03) :1515-1528
[48]   An Incentive-Aware Job Offloading Control Framework for Multi-Access Edge Computing [J].
Li, Lingxiang ;
Quek, Tony Q. S. ;
Ren, Ju ;
Yang, Howard H. ;
Chen, Zhi ;
Zhang, Yaoxue .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (01) :63-75
[49]   Dependency-Aware Joint Task Offloading and Resource Allocation in Heterogeneous Mobile Edge Computing [J].
Zhang, Guo ;
Zhang, Baoxian ;
Peng, Shuo ;
Li, Cheng .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) :19444-19458
[50]   Dynamic Noncontiguous Location-Aware Spectrum Aggregation for UAV-to-UAV Communications [J].
Rahmati, Mehdi ;
Mohammadi, Alireza .
IEEE SENSORS LETTERS, 2022, 6 (11)