Location-Aware Maintenance Strategies for Edge Computing Infrastructures

被引:6
作者
Souza, Paulo S. [1 ]
Ferreto, Tiago C. [1 ]
Rossi, Fabio D. [2 ]
Calheiros, Rodrigo N. [3 ]
机构
[1] Pontificia Univ Catolica Rio Grande do Sul, Sch Technol, BR-90619900 Porto Alegre, RS, Brazil
[2] Fed Inst Farroupilha, BR-97555000 Alegrete, Brazil
[3] Western Sydney Univ, Sch Comp Data & Math Sci, Parramatta, NSW 2000, Australia
关键词
Servers; Maintenance engineering; Delays; Bandwidth; Mathematical models; Wireless communication; Edge computing; update; maintenance;
D O I
10.1109/LCOMM.2022.3150243
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Efficient server maintenance and update is essential to prevent performance and security issues in edge computing environments. Despite many initiatives in maintenance planning, state-of-the-art approaches concentrate on carrying out updates in cloud data centers, ignoring aspects of the problem that are specific to the edge computing paradigm, such as user-location awareness. In this letter, we present two maintenance strategies, called Lamp and Laxus, that consider users' locations when performing migration decisions to avoid delay bottlenecks during edge servers maintenance. Results show that the proposed strategies can reduce maintenance time by 44.27% compared to existing strategies while effectively avoiding delay bottlenecks.
引用
收藏
页码:848 / 852
页数:5
相关论文
共 50 条
[21]   Resource-Aware Workload Orchestration for Edge Computing [J].
Babirye, Susan ;
Serugunda, Jonathan ;
Okello, Dorothy ;
Mwanje, Stephen .
2020 28TH TELECOMMUNICATIONS FORUM (TELFOR), 2020, :117-120
[22]   Incentive-Aware Partitioning and Offloading Scheme for Inference Services in Edge Computing [J].
Kim, TaeYoung ;
Kim, Chang Kyung ;
Lee, Seung-seob ;
Lee, Sukyoung .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (04) :1580-1592
[23]   Algorithms for Data Sharing-Aware Task Allocation in Edge Computing Systems [J].
Rabinia, Sanaz ;
Didar, Niloofar ;
Brocanelli, Marco ;
Grosu, Daniel .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2025, 36 (01) :15-28
[24]   Quality-Aware Task Offloading for Cooperative Perception in Vehicular Edge Computing [J].
Zaki, Amr M. ;
Elsayed, Sara A. ;
Elgazzar, Khalid ;
Hassanein, Hossam S. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (12) :18320-18332
[25]   Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach [J].
Shu, Chang ;
Zhao, Zhiwei ;
Han, Yunpeng ;
Min, Geyong ;
Duan, Hancong .
IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (03) :1678-1689
[26]   A lightweight storage framework for edge computing infrastructures/EdgePersist [J].
Psomakelis, Evangelos ;
Makris, Antonios ;
Tserpes, Konstantinos ;
Pateraki, Maria .
SOFTWARE IMPACTS, 2023, 17
[27]   Towards a Distributed Storage Framework for Edge Computing Infrastructures [J].
Makris, Antonios ;
Psomakelis, Evangelos ;
Theodoropoulos, Theodoros ;
Tserpes, Konstantinos .
2ND WORKSHOP ON FLEXIBLE RESOURCE AND APPLICATION MANAGEMENT ON THE EDGE, FRAME 2022, 2022, :9-14
[28]   Energy aware edge computing: A survey [J].
Jiang, Congfeng ;
Fan, Tiantian ;
Gao, Honghao ;
Shi, Weisong ;
Liu, Liangkai ;
Cerin, Christophe ;
Wan, Jian .
COMPUTER COMMUNICATIONS, 2020, 151 :556-580
[29]   Location-Aware Beamforming for MIMO-Enabled UAV Communications: An Unknown Input Observer Approach [J].
Mohammadi, Alireza ;
Rahmati, Mehdi ;
Malik, Hafiz .
IEEE SENSORS JOURNAL, 2022, 22 (08) :8206-8215
[30]   Location-Aware Wireless Resource Allocation in Industrial-Like Environment [J].
Rea, Maurizio ;
Giustiniano, Domenico .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (02) :1025-1035