On almost sure exponential stabilization and destabilization of stochastic differential delay system by Levy noise

被引:0
作者
Liu Dezhi [1 ,2 ,3 ]
Wang Weiqun [2 ]
Zhang Guangchen [2 ]
机构
[1] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
[2] Nanjing Univ Sci & Technol, Dept Appl Math, Nanjing 210094, Jiangsu, Peoples R China
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
来源
2014 33RD CHINESE CONTROL CONFERENCE (CCC) | 2014年
关键词
Almost sure; Stabilization; Destabilization; Delay; Levy process; DEPENDENT ROBUST STABILITY; TIME-VARYING DELAY; EQUATIONS; DRIVEN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Levy noise has been employed to stabilize the differential delay system, which have generalized the Brownian motion case, and we deal with the inevitable delay problem. The sufficient conditions of stabilization and destabilization have been given in the main results, and we discuss the reasons of increasing conservatism in the final section of the paper.
引用
收藏
页码:6065 / 6069
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 1992, MATH ITS APPL SOVIET
[2]  
Aoki M., 2002, IEEE T AUTOMATIC CON, V21, P213
[3]   ASYMPTOTIC STABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY LEVY NOISE [J].
Applebaum, David ;
Siakalli, Michailina .
JOURNAL OF APPLIED PROBABILITY, 2009, 46 (04) :1116-1129
[4]  
ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
[5]   Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string [J].
Balanov, AG ;
Janson, NB ;
McClintock, PVE ;
Tucker, RW ;
Wang, CHT .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :381-394
[6]   STABILITY OF FAST PERIODIC-SYSTEMS [J].
BELLMAN, R ;
BENTSMAN, J ;
MEERKOV, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :289-291
[7]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[8]  
Hale J.K., 1993, Introduction to Functional Differntial Equations
[9]  
Khasminski R. Z., 1980, STOCHASTIC STABILITY
[10]   Further results on delay-dependent robust stability of uncertain fuzzy systems with time-varying delay [J].
Lien, CH .
CHAOS SOLITONS & FRACTALS, 2006, 28 (02) :422-427