Polarimetric imaging and retrieval of target polarization characteristics in underwater environment

被引:40
作者
Gu, Yalong [1 ,2 ]
Carrizo, Carlos [1 ]
Gilerson, Alexander A. [1 ]
Brady, Parrish C. [3 ]
Cummings, Molly E. [3 ]
Twardowski, Michael S. [4 ]
Sullivan, James M. [4 ]
Ibrahim, Amir I. [1 ,5 ,6 ]
Kattawar, George W. [7 ]
机构
[1] CUNY, City Coll, Opt Remote Sensing Lab, New York, NY 10031 USA
[2] Earth Resources Technol Inc, Laurel, MD 20707 USA
[3] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA
[4] Harbor Branch Oceanog Inst Inc, Ft Pierce, FL 34946 USA
[5] Univ Space Res Assoc, Columbia, MD 21044 USA
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[7] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
基金
美国国家科学基金会; 美国国家航空航天局; 美国海洋和大气管理局;
关键词
BEAM SPREAD FUNCTIONS; POINT-SPREAD; MONTE-CARLO; RADIATIVE-TRANSFER; SCATTERING MEDIA; NATURAL-WATERS; MUELLER MATRIX; LIGHT; CAMOUFLAGE; VISIBILITY;
D O I
10.1364/AO.55.000626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Polarized light fields contain more information than simple irradiance and such capabilities provide an advanced tool for underwater imaging. The concept of the beam spread function (BSF) for analysis of scalar underwater imaging was extended to a polarized BSF which considers polarization. The following studies of the polarized BSF in an underwater environment through Monte Carlo simulations and experiments led to a simplified underwater polarimetric imaging model. With the knowledge acquired in the analysis of the polarimetric imaging formation process of a manmade underwater target with known polarization properties, a method to extract the inherent optical properties of the water and to retrieve polarization characteristics of the target was explored. The proposed method for retrieval of underwater target polarization characteristics should contribute to future efforts to reveal the underlying mechanism of polarization camouflage possessed by marine animals and finally to generalize guidelines for creating engineered surfaces capable of similar polarization camouflage abilities in an underwater environment. (C) 2016 Optical Society of America
引用
收藏
页码:626 / 637
页数:12
相关论文
共 46 条
  • [31] Mobley C.D., 2014, HydroPol Mathematical Documentation: Invariant Imbedding Theory for the Vector Radiative Transfer Equation
  • [32] Vivid, full-color aluminum plasmonic pixels
    Olson, Jana
    Manjavacas, Alejandro
    Liu, Lifei
    Chang, Wei-Shun
    Foerster, Benjamin
    King, Nicholas S.
    Knight, Mark W.
    Nordlander, Peter
    Halas, Naomi J.
    Link, Stephan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (40) : 14348 - 14353
  • [33] Three Monte Carlo programs of polarized light transport into scattering media: part I
    Ramella-Roman, JC
    Prahl, SA
    Jacques, SL
    [J]. OPTICS EXPRESS, 2005, 13 (12): : 4420 - 4438
  • [34] The molecular basis of mechanisms underlying polarization vision
    Roberts, Nicholas W.
    Porter, Megan L.
    Cronin, Thomas W.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2011, 366 (1565) : 627 - 637
  • [35] Recovery of underwater visibility and structure by polarization analysis
    Schechner, YY
    Karpel, N
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2005, 30 (03) : 570 - 587
  • [36] Angular shape of the oceanic particulate volume scattering function in the backward direction
    Sullivan, James M.
    Twardowski, Michael S.
    [J]. APPLIED OPTICS, 2009, 48 (35) : 6811 - 6819
  • [37] Polarized light in coastal waters: hyperspectral and multiangular analysis
    Tonizzo, Alberto
    Zhou, Jing
    Gilerson, Alexander
    Twardowski, Michael S.
    Gray, Deric J.
    Arnone, Robert A.
    Gross, Barry M.
    Moshary, Fred
    Ahmed, Samir A.
    [J]. OPTICS EXPRESS, 2009, 17 (07): : 5666 - 5682
  • [38] Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations
    Tynes, HH
    Kattawar, GW
    Zege, EP
    Katsev, IL
    Prikhach, AS
    Chaikovskaya, LI
    [J]. APPLIED OPTICS, 2001, 40 (03) : 400 - 412
  • [39] Review of passive imaging polarimetry for remote sensing applications
    Tyo, J. Scott
    Goldstein, Dennis L.
    Chenault, David B.
    Shaw, Joseph A.
    [J]. APPLIED OPTICS, 2006, 45 (22) : 5453 - 5469
  • [40] Full Stokes polarization imaging camera
    Vedel, M.
    Breugnot, S.
    Lechocinski, N.
    [J]. POLARIZATION SCIENCE AND REMOTE SENSING V, 2011, 8160