On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments

被引:75
|
作者
Windmeijer, Frank [1 ,2 ]
Farbmacher, Helmut [3 ]
Davies, Neil [2 ,4 ]
Smith, George Davey [2 ,4 ]
机构
[1] Univ Bristol, Dept Econ, Bristol BS8 1TH, Avon, England
[2] MRC Integrat Epidemiol Unit, Bristol, Avon, England
[3] Max Planck Soc Munich, Ctr Econ Aging, Munich, Germany
[4] Univ Bristol, Sch Social & Community Med, Bristol, Avon, England
基金
英国医学研究理事会;
关键词
Causal inference; Instrumental variables estimation; Invalid instruments; Lasso; Mendelian randomization; MENDELIAN RANDOMIZATION; GENERALIZED-METHOD; MODEL SELECTION; MOMENTS; INFERENCE;
D O I
10.1080/01621459.2018.1498346
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the behavior of the Lasso for selecting invalid instruments in linear instrumental variables models for estimating causal effects of exposures on outcomes, as proposed recently by Kang et al. Invalid instruments are such that they fail the exclusion restriction and enter the model as explanatory variables. We show that for this setup, the Lasso may not consistently select the invalid instruments if these are relatively strong. We propose a median estimator that is consistent when less than 50% of the instruments are invalid, and its consistency does not depend on the relative strength of the instruments, or their correlation structure. We show that this estimator can be used for adaptive Lasso estimation, with the resulting estimator having oracle properties. The methods are applied to a Mendelian randomization study to estimate the causal effect of body mass index (BMI) on diastolic blood pressure, using data on individuals from the UK Biobank, with 96 single nucleotide polymorphisms as potential instruments for BMI. Supplementary materials for this article are available online.
引用
收藏
页码:1339 / 1350
页数:12
相关论文
共 50 条
  • [1] Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization
    Kang, Hyunseung
    Zhang, Anru
    Cai, T. Tony
    Small, Dylan S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (513) : 132 - 144
  • [2] On the instrumental variable estimation with many weak and invalid instruments
    Lin, Yiqi
    Windmeijer, Frank
    Song, Xinyuan
    Fan, Qingliang
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 86 (04) : 1068 - 1088
  • [3] Semiparametric efficient G-estimation with invalid instrumental variables
    Sun, B.
    Liu, Z.
    Tchetgen, E. J. Tchetgen
    BIOMETRIKA, 2023, 110 (04) : 953 - 971
  • [4] Instrumental Variables Estimation without Outside Instruments
    Kien C. Tran
    Mike G. Tsionas
    Journal of Quantitative Economics, 2022, 20 : 489 - 506
  • [5] Instrumental variables estimation with partially missing instruments
    Mogstad, M.
    Wiswall, M.
    ECONOMICS LETTERS, 2012, 114 (02) : 186 - 189
  • [6] Instrumental Variables Estimation without Outside Instruments
    Tran, Kien C.
    Tsionas, Mike G.
    JOURNAL OF QUANTITATIVE ECONOMICS, 2022, 20 (03) : 489 - 506
  • [7] Causal inference with some invalid instrumental variables: A quasi-Bayesian approach
    Goh, Gyuhyeong
    Yu, Jisang
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2022, 84 (06) : 1432 - 1451
  • [8] INSTRUMENTAL VARIABLES ESTIMATION IN ERRORS-IN-VARIABLES MODELS WHEN INSTRUMENTS ARE CORRELATED WITH ERRORS
    IWATA, S
    JOURNAL OF ECONOMETRICS, 1992, 53 (1-3) : 297 - 322
  • [9] Instrumental variables estimation with many weak instruments using regularized JIVE
    Hansen, Christian
    Kozbur, Damian
    JOURNAL OF ECONOMETRICS, 2014, 182 (02) : 290 - 308
  • [10] Instrumental variable analysis of multiplicative models with potentially invalid instruments
    Shardell, Michelle
    Ferrucci, Luigi
    STATISTICS IN MEDICINE, 2016, 35 (29) : 5430 - 5447