On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids

被引:17
作者
Antonelli, Paolo [1 ]
Spirito, Stefano [2 ]
机构
[1] GSSI, Viale Francesco Crispi 7, I-67100 Laquila, Italy
[2] DISIM, Via Vetoio, I-67100 Laquila, Italy
关键词
Compressible fluids; Navier-Stokes-Korteweg; Capillarity; Vacuum; Compactness; SYSTEM; POSEDNESS; EXISTENCE; MODEL;
D O I
10.1016/j.na.2019.03.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Navier-Stokes-Korteweg equations for a viscous compressible fluid with capillarity effects in three space dimensions. We prove compactness of finite energy weak solutions for large initial data. In contrast with previous results regarding this system, vacuum regions are allowed in the definition of weak solutions and no additional damping terms are considered. The compactness is obtained by introducing suitable truncations of the velocity field and the mass density at different scales and use only the a priori bounds obtained by the energy and the BD entropy. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:110 / 124
页数:15
相关论文
共 30 条
[1]  
[Anonymous], ARXIV150406826
[2]  
Antonelli P., ARXIV190200402
[3]   On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (01) :133-147
[4]   Global Existence of Finite Energy Weak Solutions of Quantum Navier-Stokes Equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (03) :1161-1199
[5]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[6]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[7]   GlobalWell-Posedness of the Euler-Korteweg System for Small Irrotational Data [J].
Audiard, Corentin ;
Haspot, Boris .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 351 (01) :201-247
[8]   On the well-posedness for the Euler-Korteweg model in several space dimensions [J].
Benzoni-Gavage, S. ;
Danchin, R. ;
Descombes, S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1499-1579
[9]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[10]   On viscous shallow-water equations (Saint-Venant model) and the quasi-geostrophic limit [J].
Bresch, D ;
Desjardins, B .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (12) :1079-1084