Maskit combinations of Poincare-Einstein metrics

被引:24
作者
Mazzeo, Rafe [1 ]
Pacard, Frank
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Univ Paris 12, F-94010 Creteil, France
基金
美国国家科学基金会;
关键词
gluing; Poincare-Einstein; uniformly degenerate operators;
D O I
10.1016/j.aim.2005.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a boundary connected sum theorem for asymptotically hyperbolic Einstein metrics, and also show that if the two metrics have scalar positive conformal infinities, then the same is true for this boundary join. This construction is also extended to spaces with a finite number of interior conic singularities, and as a result we show that any 3-manifold which is a finite connected sum of quotients of S-3 and S-2 x S-1 bounds such a space (with conic singularities); putatively, any 3-manifold admitting a metric of positive scalar curvature is of this form. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:379 / 412
页数:34
相关论文
共 23 条
[1]  
Anderson M., MATHDG0105243
[2]   Boundary regularity, uniqueness and nonuniqueness for AH Einstein metrics on 4-manifolds [J].
Anderson, MT .
ADVANCES IN MATHEMATICS, 2003, 179 (02) :205-249
[3]  
Anderson MT, 2001, MATH RES LETT, V8, P171
[4]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[5]  
BIQUARD O, 2000, ASTERISQUE, V265
[6]  
CAI M, 1999, ADV THEOR MATH PHYS, V3, P1769
[7]   Einstein metrics and complex singularities [J].
Calderbank, DMJ ;
Singer, MA .
INVENTIONES MATHEMATICAE, 2004, 156 (02) :405-443
[8]  
CHRUSCIEL P, IN PRESS J DIFFERENT
[9]  
Fefferman C., 1984, ASTERISQUE, P95
[10]   EINSTEIN-METRICS WITH PRESCRIBED CONFORMAL INFINITY ON THE BALL [J].
GRAHAM, CR ;
LEE, JM .
ADVANCES IN MATHEMATICS, 1991, 87 (02) :186-225