Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

被引:16
作者
Chakrabarty, Rajan K. [1 ,2 ]
Novosselov, Igor V. [3 ,4 ]
Beres, Nicholas D. [2 ]
Moosmueller, Hans [2 ]
Sorensen, Christopher M. [5 ]
Stipe, Christopher B. [6 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[2] Nevada Syst Higher Educ, Desert Res Inst, Lab Aerosol Sci Spect & Opt, Reno, NV 89512 USA
[3] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[4] Enertechnix Inc, Maple Valley, WA 98068 USA
[5] Kansas State Univ, Dept Phys, Condensed Matter Lab, Manhattan, KS 66506 USA
[6] TSI Inc, Shoreview, MN 55126 USA
关键词
LIGHT-SCATTERING; SOOT;
D O I
10.1063/1.4884057
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (-g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in -g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in -g flames, which reduces the time to gel for nanoparticles by approximate to 10(6) s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:4
相关论文
共 23 条
[1]   Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation [J].
Beaucage, G ;
Kammler, HK ;
Mueller, R ;
Strobel, R ;
Agashe, N ;
Pratsinis, SE ;
Narayanan, T .
NATURE MATERIALS, 2004, 3 (06) :370-374
[2]  
Brinker C. J., 2013, SOL GEL SCI PHYS CHE, DOI [DOI 10.1016/B978-0-08-057103-4.50001-5, 10.1016/C2009-0-22386-5]
[3]   Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames [J].
Brookes, SJ ;
Moss, JB .
COMBUSTION AND FLAME, 1999, 116 (04) :486-503
[4]   Light scattering and absorption by fractal-like carbonaceous chain aggregates:: Comparison of theories and experiment [J].
Chakrabarty, Rajan K. ;
Moosm ller, Hans ;
Arnott, W. Patrick ;
Garro, Mark A. ;
Slowik, Jay G. ;
Cross, Eben S. ;
Han, Jeong-Ho ;
Davidovits, Paul ;
Onasch, Timothy B. ;
Worsnop, Douglas R. .
APPLIED OPTICS, 2007, 46 (28) :6990-7006
[5]   Observation of Superaggregates from a Reversed Gravity Low-Sooting Flame [J].
Chakrabarty, Rajan K. ;
Moosmueller, Hans ;
Garro, Mark A. ;
Stipe, Christopher B. .
AEROSOL SCIENCE AND TECHNOLOGY, 2012, 46 (01) :I-III
[6]   Low Fractal Dimension Cluster-Dilute Soot Aggregates from a Premixed Flame [J].
Chakrabarty, Rajan K. ;
Moosmueller, Hans ;
Arnott, W. Patrick ;
Garro, Mark A. ;
Tian, Guoxun ;
Slowik, Jay G. ;
Cross, Eben S. ;
Han, Jeong-Ho ;
Davidovits, Paul ;
Onasch, Timothy B. ;
Worsnop, Douglas R. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[7]   Aerosol gelation: Synthesis of a novel, lightweight, high specific surface area material [J].
Dhaubhadel, Rajan ;
Gerving, Corey S. ;
Chakrabarti, Amitabha ;
Sorensen, Christopher M. .
AEROSOL SCIENCE AND TECHNOLOGY, 2007, 41 (08) :804-810
[8]   Aerogel insulation systems for space launch applications [J].
Fesmire, JE .
CRYOGENICS, 2006, 46 (2-3) :111-117
[9]  
Jullien R., 1987, AGGREGATION FRACTAL
[10]  
Jullien R., 1987, Aggregation and Fractal Aggregates, pix