Concise proofs for adjacent vertex-distinguishing total colorings

被引:47
作者
Hulgan, Jonathan [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
Adjacent vertex-distinguishing total; coloring; chromatic number; PROPER EDGE-COLORINGS; GRAPHS;
D O I
10.1016/j.disc.2008.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph and f : (VUE) -> [k] be a proper total k-coloring of G. We say that f is an adjacent vertex- distinguishing total coloring if for any two adjacent vertices, the set of colors appearing on the vertex and incident edges are different. We call the smallest k for which such a coloring of G exists the adjacent vertex-distinguishing total chromatic number, and denote it by chi(at)(G). Here we provide short proofs for an upper bound on the adjacent vertex-distinguishing total chromatic number of graphs of maximum degree three, and the exact values of chi(at)(G) when G is a complete graph or a cycle. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2548 / 2550
页数:3
相关论文
共 7 条
[1]   Vertex distinguishing colorings of graphs with Δ (G)=2 [J].
Balister, PN ;
Bollobás, B ;
Schelp, RH .
DISCRETE MATHEMATICS, 2002, 252 (1-3) :17-29
[2]   On the vertex-distinguishing proper edge-colorings of graphs [J].
Bazgan, C ;
Harkat-Benhamdine, A ;
Li, H ;
Wozniak, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) :288-301
[3]  
Burris AC, 1997, J GRAPH THEOR, V26, P73, DOI 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO
[4]  
2-C
[5]   On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ(G)=3 [J].
Wang, Haiying .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (01) :87-109
[6]   On adjacent-vertex-distinguishing total coloring of graphs [J].
Zhang, ZF ;
Chen, XE ;
Li, JW ;
Yao, B ;
Lu, XZ ;
Wang, JF .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (03) :289-299
[7]   Adjacent strong edge coloring of graphs [J].
Zhang, ZF ;
Liu, LZ ;
Wang, JF .
APPLIED MATHEMATICS LETTERS, 2002, 15 (05) :623-626