UNIVERSAL CODOMAINS TO REPRESENT INTERVAL ORDERS

被引:12
作者
Carlos Candeal, Juan [2 ]
Gutierrez Garcia, Javier [3 ]
Indurain, Esteban [1 ]
机构
[1] Univ Publ Navarra, Depto Matemat, Pamplona 31006, Spain
[2] Univ Zaragoza, Depto Anal Econ, Fac Ciencias Econ & Empresariales, Zaragoza 50005, Spain
[3] Univ Pais Vasco Euskal Herriko Unibertsitatea, Depto Matemat, Bilbao 48080, Spain
关键词
Interval orders; fuzzy numbers; universal codomains; continuous representations of orderings; INTRANSITIVE INDIFFERENCE; NUMERICAL REPRESENTATIONS; PREFERENCES;
D O I
10.1142/S0218488509005814
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a binary relation defined on a set, we study its representability by means of a monotonic function that takes values on a suitable universal codomain (that depends on the kind of relation considered). We pay an special attention to the representability of interval orders, studying their alternative universal codomains, some of them equivalent to the set of symmetric triangular fuzzy numbers.
引用
收藏
页码:197 / 219
页数:23
相关论文
共 43 条
[1]  
Aczel J., 1987, A Short Course on Functional Equations
[2]  
Aleskerov F., 2007, Utility maximization, choice and preference, V16
[3]  
[Anonymous], 1985, Interval Orders and Interval Graphs: A Study of Partially Ordered Sets
[4]  
[Anonymous], 1997, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser.
[5]  
[Anonymous], 1995, REPRESENTATIONS PREF
[6]   A NOTE ON THE THEORY OF CONSUMER'S BEHAVIOUR [J].
Armstrong, W. E. .
OXFORD ECONOMIC PAPERS-NEW SERIES, 1950, 2 (01) :119-122
[7]   NUMERICAL REPRESENTATIONS OF IMPERFECTLY ORDERED PREFERENCES (A UNIFIED GEOMETRIC EXPOSITION) [J].
BEJA, A ;
GILBOA, I .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1992, 36 (03) :426-449
[8]  
Birkhoff G., 1967, Amer. Math. Soc. Colloq. Publ., V25
[9]   REPRESENTING PREFERENCES WITH NONTRANSITIVE INDIFFERENCE BY A SINGLE REAL-VALUED FUNCTION [J].
BOSI, G ;
ISLER, R .
JOURNAL OF MATHEMATICAL ECONOMICS, 1995, 24 (07) :621-631
[10]   Numerical representations of interval orders [J].
Bosi, G ;
Candeal, JC ;
Induráin, E ;
Oloriz, E ;
Zudaire, M .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2001, 18 (02) :171-190