Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers

被引:71
作者
Campelo, Felix [1 ,2 ]
Arnarez, Clement [3 ,4 ]
Marrink, Siewert J. [3 ,4 ]
Kozlov, Michael M. [5 ]
机构
[1] Ctr Genom Regulat, Cell & Dev Biol Programme, Barcelona 08003, Spain
[2] Univ Pompeu Fabra, Barcelona 08003, Spain
[3] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, NL-9747 AG Groningen, Netherlands
[4] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[5] Tel Aviv Univ, Sackler Fac Med, Dept Physiol & Pharmacol, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Membrane elasticity; Surface thermodynamics; Curvature; Trans-monolayer elasticity profile; Molecular dynamics; STRONGLY CURVED MONOLAYERS; LIPID-BILAYERS; MOLECULAR THEORY; FLUID MEMBRANES; NEUTRAL SURFACE; MECHANISMS; FLUCTUATIONS; MODULI; TILT; CELL;
D O I
10.1016/j.cis.2014.01.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Helfrich model of membrane bending elasticity has been most influential in establishment and development of Soft-Matter Physics of lipid bilayers and biological membranes. Recently, Helfrich theory has been extensively used in Cell Biology to understand the phenomena of shaping, fusion and fission of cellular membranes. The general background of Helfrich theory on the one hand, and the ways of specifying the model parameters on the other, are important for quantitative treatment of particular biologically relevant membrane phenomena. Here we present the origin of Helfrich model within the context of the general Gibbs theory of capillary interfaces, and review the strategies of computing the membrane elastic moduli based on considering a lipid monolayer as a three-dimensional thick layer characterized by trans-monolayer profiles of elastic parameters. We present the results of original computations of these profiles by a state-of-the-art numerical approach. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 47 条
  • [11] Gibbs J.W., 1878, Transactions of the Connecticut Academy of Arts and Sciences, V16, P343, DOI 10.11588/heidok.00013220
  • [12] Gibbs J.W., 1878, American, J. Sci. Arts, V16, P441, DOI 10.2475/AJS.S3-16.96.441s3-16
  • [13] Computer simulations of bilayer membranes: Self-assembly and interfacial tension
    Goetz, R
    Lipowsky, R
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (17) : 7397 - 7409
  • [14] Cholesterol-induced variations in the volume and enthalpy fluctuations of lipid bilayers
    Halstenberg, S
    Heimburg, T
    Hianik, T
    Kaatze, U
    Krivanek, R
    [J]. BIOPHYSICAL JOURNAL, 1998, 75 (01) : 264 - 271
  • [15] Tilt model of inverted amphiphilic mesophases
    Hamm, M
    Kozlov, MM
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1998, 6 (04) : 519 - 528
  • [16] Elastic energy of tilt and bending of fluid membranes
    Hamm, M
    Kozlov, MM
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2000, 3 (04) : 323 - 335
  • [17] ELASTIC PROPERTIES OF LIPID BILAYERS - THEORY AND POSSIBLE EXPERIMENTS
    HELFRICH, W
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF BIOSCIENCES, 1973, C 28 (11-1): : 693 - 703
  • [18] Helfrich W., 1988, LIQUIDS INTERFACES
  • [19] The molecular mechanism of mitochondrial fusion
    Hoppins, Suzanne
    Nunnari, Jodi
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2009, 1793 (01): : 20 - 26
  • [20] Hu M, 2013, FARADAY DISCUSS, V161, P419