Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes

被引:120
作者
Jiao, Yiding [1 ]
Kang, Liqun [2 ]
Berry-Gair, Jasper [1 ]
McColl, Kit [1 ]
Li, Jianwei [1 ]
Dong, Haobo [1 ]
Jiang, Hao [3 ]
Wang, Ryan [2 ]
Cora, Furio [1 ]
Brett, Dan J. L. [2 ]
He, Guanjie [1 ,2 ,4 ]
Parkin, Ivan P. [1 ]
机构
[1] UCL, Dept Chem, Christopher Ingold Lab, 20 Gordon St, London WC1H 0AJ, England
[2] UCL, Dept Chem Engn, Torrington Pl, London WC1E 7JE, England
[3] East China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai Engn Res Ctr Hierarch Nanomat, Key Lab Ultrafine Mat,Minist Educ, 130 Meilong Rd, Shanghai 200237, Peoples R China
[4] Univ Lincoln, Sch Chem, Joseph Banks Labs, Green Lane, Lincoln LN6 7DL, England
基金
英国工程与自然科学研究理事会;
关键词
HIGH-CAPACITY; PERFORMANCE; GRAPHENE; CHALLENGES; COMPOSITE;
D O I
10.1039/d0ta08638j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The primary issue faced by MnO2 cathode materials for aqueous Zn-ion batteries (AZIBs) is the occurrence of structural transformations during cycling, resulting in unstable capacity output. Pre-intercalating closely bonded ions into the MnO2 structures has been demonstrated as an effective approach to combat this. However, mechanisms of the pre-intercalation remain unclear. Herein, two distinct delta-MnO2 (K0.28MnO2 center dot 0.1H(2)O and K0.21MnO2 center dot 0.1H(2)O) are prepared with varying amounts of pre-intercalated K+ and applied as cathodes for AZIBs. The as-prepared K0.28MnO2 center dot 0.1H(2)O cathodes exhibit relatively high specific capacity (300 mA h g(-1) at 100 mA g(-1)), satisfactory rate performance (35% capacity recovery at 5 A g(-1)) and competent cyclability (ca. 95% capacity retention after 1000 cycles at 2 A g(-1)), while inferior cyclability and rate performance are observed in K0.21MnO2 center dot 0.1H(2)O. A stable delta-MnO2 phase is observed upon cycling, with the reversible deposition of Zn4SO4(OH)(6)center dot 5H(2)O (ZSH), ion migration between electrodes and synchronous transition of Mn valence states. This work firstly and systematically reveals the role of the pre-intercalated ions via density functional theory simulations and show that above a threshold K/Mn ratio of ca. 0.26, the K ions suppress structural transformations by stabilizing the delta phase. To demonstrate its commercial potential, AZIBs with high-loading active materials are fabricated, which deliver adequate energy and power densities compared with most commercial devices.
引用
收藏
页码:22075 / 22082
页数:8
相关论文
共 53 条
[1]   Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Song, Jinju ;
Kim, Sungjin ;
Islam, Saiful ;
Pham, Duong Tung ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Baboo, Joseph Paul ;
Xiu, Zhiliang ;
Lee, Kug-Seung ;
Sun, Yang-Kook ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2017, 29 (04) :1684-1694
[2]   Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery [J].
Alfaruqi, Muhammad Hilmy ;
Islam, Saiful ;
Putro, Dimas Yunianto ;
Mathew, Vinod ;
Kim, Sungjin ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Sun, Yang-Kook ;
Kim, Kwangho ;
Kim, Jaekook .
ELECTROCHIMICA ACTA, 2018, 276 :1-11
[3]   A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications [J].
Alfaruqi, Muhammad Hilmy ;
Gim, Jihyeon ;
Kim, Sungjin ;
Song, Jinju ;
Duong Tung Pham ;
Jo, Jeonggeun ;
Xiu, Zhiliang ;
Mathew, Vinod ;
Kim, Jaekook .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 :121-125
[4]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[5]   Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions [J].
Chamoun, Mylad ;
Brant, William R. ;
Tai, Cheuk-Wai ;
Karlsson, Gunder ;
Noreus, Dag .
ENERGY STORAGE MATERIALS, 2018, 15 :351-360
[6]   Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery [J].
Chen, Linlin ;
Yang, Zhanhong ;
Qin, Haigang ;
Zeng, Xiao ;
Meng, Jinlei .
JOURNAL OF POWER SOURCES, 2019, 425 :162-169
[7]   High-Voltage Flexible Aqueous Zn-Ion Battery with Extremely Low Dropout Voltage and Super-Flat Platform [J].
Chen, Zhe ;
Wang, Panpan ;
Ji, Zhenyuan ;
Wang, Hua ;
Liu, Jie ;
Wang, Jiaqi ;
Hu, Mengmeng ;
Huang, Yan .
NANO-MICRO LETTERS, 2020, 12 (01)
[8]   Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries [J].
Deng, Xuanwei ;
Xu, Yanan ;
An, Qinyou ;
Xiong, Fangyu ;
Tan, Shuangshuang ;
Wu, Liming ;
Mai, Liqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (17) :10644-10650
[9]   Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High-Energy-Density and Durable Aqueous Zinc-Ion Battery [J].
Fang, Guozhao ;
Zhu, Chuyu ;
Chen, Minghui ;
Zhou, Jiang ;
Tang, Boya ;
Cao, Xinxin ;
Zheng, Xusheng ;
Pan, Anqiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (15)
[10]   Mechanism of Zn Insertion into Nanostructured δ-MnO2: A Nonaqueous Rechargeable Zn Metal Battery [J].
Han, Sang-Don ;
Kim, Soojeong ;
Li, Dongguo ;
Petkov, Valeri ;
Yoo, Hyun Deog ;
Phillips, Patrick J. ;
Wang, Hao ;
Kim, Jae Jin ;
More, Karren L. ;
Key, Baris ;
Klie, Robert F. ;
Cabana, Jordi ;
Stamenkovic, Vojislav R. ;
Fister, Timothy T. ;
Markovic, Nenad M. ;
Burrell, Anthony K. ;
Tepavcevic, Sanja ;
Vaughey, John T. .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4874-4884