SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI

被引:43
|
作者
Tian, Qiyuan [1 ,2 ]
Li, Ziyu [3 ]
Fan, Qiuyun [1 ,2 ]
Polimeni, Jonathan R. [1 ,2 ,4 ]
Bilgic, Berkin [1 ,2 ,4 ]
Salat, David H. [1 ,2 ]
Huang, Susie Y. [1 ,2 ,4 ]
机构
[1] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, 149 13th St, Charlestown, MA 02129 USA
[2] Harvard Med Sch, Dept Radiol, Boston, MA USA
[3] Tsinghua Univ, Dept Biomed Engn, Beijing, Peoples R China
[4] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA USA
关键词
Convolutional neural network; Supervised learning; Residual learning; Image synthesis; Diffusion tensor transformation; Normal aging; SURFACE-BASED ANALYSIS; K-SPACE NEIGHBORHOODS; WHITE-MATTER; ALZHEIMERS-DISEASE; ORIENTATION; MODEL; RESOLUTION; DTI; ACQUISITION; ACCURATE;
D O I
10.1016/j.neuroimage.2022.119033
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion tensor magnetic resonance imaging (DTI) is a widely adopted neuroimaging method for the in vivo mapping of brain tissue microstructure and white matter tracts. Nonetheless, the noise in the diffusion-weighted images (DWIs) decreases the accuracy and precision of DTI derived microstructural parameters and leads to prolonged acquisition time for achieving improved signal-to-noise ratio (SNR). Deep learning-based image denoising using convolutional neural networks (CNNs) has superior performance but often requires additional high-SNR data for supervising the training of CNNs, which reduces the feasibility of supervised learning-based denoising in practice. In this work, we develop a self-supervised deep learning-based method entitled "SDnDTI " for de noising DTI data, which does not require additional high-SNR data for training. Specifically, SDnDTI divides multi-directional DTI data into many subsets of six DWI volumes and transforms DWIs from each subset to along the same diffusion-encoding directions through the diffusion tensor model, generating multiple repetitions of DWIs with identical image contrasts but different noise observations. SDnDTI removes noise by first denoising each repetition of DWIs using a deep 3-dimensional CNN with the average of all repetitions with higher SNR as the training target, following the same approach as normal supervised learning based denoising methods, and then averaging CNN-denoised images for achieving higher SNR. The denoising efficacy of SDnDTI is demonstrated in terms of the similarity of output images and resultant DTI metrics compared to the ground truth generated using substantially more DWI volumes on two datasets with different spatial resolutions, b-values and numbers of input DWI volumes provided by the Human Connectome Project (HCP) and the Lifespan HCP in Aging. The SDnDTI results preserve image sharpness and textural details and substantially improve upon those from the raw data. The results of SDnDTI are comparable to those from supervised learning-based denoising and outperform those from state-of-the-art conventional denoising algorithms including BM4D, AONLM and MPPCA. By leveraging domain knowledge of diffusion MRI physics, SDnDTI makes it easier to use CNN-based denoising methods in practice and has the potential to benefit a wider range of research and clinical applications that require accelerated DTI acquisition and high-quality DTI data for mapping of tissue microstructure, fiber tracts and structural connectivity in the living human brain.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Patch2Self: Denoising Diffusion MRI with Self-Supervised Learning
    Fadnavis, Shreyas
    Batson, Joshua
    Garyfallidis, Eleftherios
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [2] NVST Image Denoising Based on Self-Supervised Deep Learning
    Lu Xianwei
    Liu Hui
    Shang Zhenhong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (06)
  • [3] Self-supervised learning for denoising of multidimensional MRI data
    Kang, Beomgu
    Lee, Wonil
    Seo, Hyunseok
    Heo, Hye-Young
    Park, Hyunwook
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 1980 - 1994
  • [4] Self-Supervised Deep Depth Denoising
    Sterzentsenko, Vladimiros
    Saroglou, Leonidas
    Chatzitofis, Anargyros
    Thermos, Spyridon
    Zioulis, Nikolaos
    Doumanoglou, Alexandros
    Zarpalas, Dimitrios
    Daras, Petros
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1242 - 1251
  • [5] Comparison between Supervised and Self-supervised Deep Learning for SEM Image Denoising
    Okud, Tomoyuki
    Chen, Jun
    Motoyoshi, Takahiro
    Yumiba, Ryou
    Ishikawa, Masayoshi
    Toyoda, Yasutaka
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496
  • [6] A Self-Supervised Denoising Method Based on Deep Noise Estimation
    Lin, Hongbo
    Sun, Fuyao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [7] A Self-Supervised Denoising Method Based on Deep Noise Estimation
    Lin, Hongbo
    Sun, Fuyao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [8] Dropout-Based Robust Self-Supervised Deep Learning for Seismic Data Denoising
    Chen, Gui
    Liu, Yang
    Zhang, Mi
    Zhang, Haoran
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] Seismic Data Denoising Using a Self-Supervised Deep Learning Network
    Wang, Detao
    Chen, Guoxiong
    Chen, Jianwei
    Cheng, Qiuming
    MATHEMATICAL GEOSCIENCES, 2024, 56 (03) : 487 - 510
  • [10] Deep Self-Supervised Learning of Speech Denoising from Noisy Speeches
    Sanada, Yutaro
    Nakagawa, Takumi
    Wada, Yuichiro
    Takanashi, Kosaku
    Zhang, Yuhui
    Tokuyama, Kiichi
    Kanamori, Takafumi
    Yamada, Tomonori
    INTERSPEECH 2022, 2022, : 1178 - 1182