Creating and relating three-dimensional integrable maps

被引:15
作者
Roberts, John A. G. [1 ]
Quispel, G. R. W.
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] La Trobe Univ, Ctr Excellence Math & Stat Complex Syst, Melbourne, Vic 3086, Australia
[3] La Trobe Univ, Dept Math, Melbourne, Vic 3086, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 42期
关键词
D O I
10.1088/0305-4470/39/42/L03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how some integrable third-order difference equations recently given in the literature are related to one another by the process of interchanging parameters and integrals. Using the same process, we then create a 21-parameter family of integrable third-order difference equations that contains the previous examples as special cases. Our methodology illustrates that the combination of finding 2-integrals (i.e. integrals of the second iterate of the map), exploiting linear parameter dependence and using the interchange process provides a powerful way to relate and create higher-dimensional discrete integrable systems.
引用
收藏
页码:L605 / L615
页数:11
相关论文
共 23 条
[1]  
[Anonymous], TOPICS MODERN PHYS T
[2]  
[Anonymous], 1945, MATH GAZ
[3]   HIGHER DIMENSIONAL MAPPINGS [J].
BELLON, MP ;
MAILLARD, JM ;
VIALLET, CM .
PHYSICS LETTERS A, 1991, 159 (4-5) :233-244
[4]   A new family of four-dimensional symplectic and integrable mappings [J].
Capel, HW ;
Sahadevan, R .
PHYSICA A, 2001, 289 (1-2) :86-106
[5]  
Graham A., 2018, KRONECKER PRODUCTS M
[6]  
GRAMMATICOS B, 1999, PAINLEVE PROPERTY ON, P413
[7]   k-integrals and k-Lie symmetries in discrete dynamical systems [J].
Haggar, FA ;
Byrnes, GB ;
Quispel, GRW ;
Capel, HW .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 233 (1-2) :379-394
[8]   Recurrence equations, an integrable system [J].
Hirota, R ;
Yahagi, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (12) :2867-2872
[9]   How to find the conserved quantities of nonlinear discrete equations [J].
Hirota, R ;
Kimura, K ;
Yahagi, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10377-10386
[10]   Higher dimensional integrable mappings [J].
Iatrou, Apostolos .
Physica D: Nonlinear Phenomena, 2003, 179 (3-4) :229-253