Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities

被引:292
作者
Li, Ling [1 ,2 ]
Hu, Shuo [1 ]
Chen, Xiaoyuan [2 ]
机构
[1] Cent S Univ, Xiangya Hosp, Dept PET Ctr, Changsha 410008, Hunan, Peoples R China
[2] NIBIB, LOMIN, NIH, Bethesda, MD 20892 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
CRISPR/Cas9; Non-viral delivery; Genetic disorder; Cancer; Nanomedicine; Clinical translation; CELL-PENETRATING PEPTIDE; RNA-GUIDED ENDONUCLEASE; CRISPR-CAS SYSTEM; TRANSCAPILLARY PRESSURE-GRADIENT; HUMAN OSTEOSARCOMA XENOGRAFTS; SEQUENCE-SPECIFIC CONTROL; PLURIPOTENT STEM-CELLS; GENE DELIVERY; IN-VIVO; DRUG-DELIVERY;
D O I
10.1016/j.biomaterials.2018.04.031
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed. Published by Elsevier Ltd.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 203 条
[1]   Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy [J].
Aggarwal, Parag ;
Hall, Jennifer B. ;
McLeland, Christopher B. ;
Dobrovolskaia, Marina A. ;
McNeil, Scott E. .
ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (06) :428-437
[2]   Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework [J].
Alsaiari, Shahad K. ;
Patil, Sachin ;
Alyami, Mram ;
Alamoudi, Kholod O. ;
Aleisa, Fajr A. ;
Merzaban, Jasmeen S. ;
Li, Mo ;
Khashab, Niveen M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) :143-146
[3]   Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region [J].
Amin, Mohamadreza ;
Mansourian, Mercedeh ;
Koning, Gerben A. ;
Badiee, Ali ;
Jaafari, Mahmoud Reza ;
ten Hagen, Timo L. M. .
JOURNAL OF CONTROLLED RELEASE, 2015, 220 :308-315
[4]   Point mutations in the murine fumarylacetoacetate hydrolase gene: Animal models for the human genetic disorder hereditary tyrosinemia type 1 [J].
Aponte, JL ;
Sega, GA ;
Hauser, LJ ;
Dhar, MS ;
Withrow, CM ;
Carpenter, DA ;
Rinchik, EM ;
Culiat, CT ;
Johnson, DK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :641-645
[5]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[6]   Applications of CRISPR technologies in research and beyond [J].
Barrangou, Rodolphe ;
Doudna, Jennifer A. .
NATURE BIOTECHNOLOGY, 2016, 34 (09) :933-941
[7]  
Behr JP, 1997, CHIMIA, V51, P34
[8]   Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy [J].
Bengtsson, Niclas E. ;
Hall, John K. ;
Odom, Guy L. ;
Phelps, Michael P. ;
Andrus, Colin R. ;
Hawkins, R. David ;
Hauschka, Stephen D. ;
Chamberlain, Joel R. ;
Chamberlain, Jeffrey S. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials [J].
Bikard, David ;
Euler, Chad W. ;
Jiang, Wenyan ;
Nussenzweig, Philip M. ;
Goldberg, Gregory W. ;
Duportet, Xavier ;
Fischetti, Vincent A. ;
Marraffini, Luciano A. .
NATURE BIOTECHNOLOGY, 2014, 32 (11) :1146-1150
[10]   A family of drug transporters: The multidrug resistance-associated proteins [J].
Borst, P ;
Evers, R ;
Kool, M ;
Wijnholds, J .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2000, 92 (16) :1295-1302