Adversarial Deformation Regularization for Training Image Registration Neural Networks

被引:66
作者
Hu, Yipeng [1 ,2 ]
Gibson, Eli [1 ]
Ghavami, Nooshin [1 ]
Bonmati, Ester [1 ]
Moore, Caroline M. [3 ]
Emberton, Mark [3 ]
Vercauteren, Tom [1 ]
Noble, J. Alison [2 ]
Barratt, Dean C. [1 ]
机构
[1] UCL, Ctr Med Image Comp, London, England
[2] Univ Oxford, Inst Biomed Engn, Oxford, England
[3] UCL, Div Surg & Intervent Sci, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I | 2018年 / 11070卷
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
PROSTATE; FUSION; MR;
D O I
10.1007/978-3-030-00928-1_87
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe an adversarial learning approach to constrain convolutional neural network training for image registration, replacing heuristic smoothness measures of displacement fields often used in these tasks. Using minimally-invasive prostate cancer intervention as an example application, we demonstrate the feasibility of utilizing biomechanical simulations to regularize a weakly-supervised anatomical-label-driven registration network for aligning pre-procedural magnetic resonance (MR) and 3D intra-procedural transrectal ultrasound (TRUS) images. A discriminator network is optimized to distinguish the registration-predicted displacement fields from the motion data simulated by finite element analysis. During training, the registration network simultaneously aims to maximize similarity between anatomical labels that drives image alignment and to minimize an adversarial generator loss that measures divergence between the predicted-and simulated deformation. The end-to-end trained network enables efficient and fully-automated registration that only requires an MR and TRUS image pair as input, without anatomical labels or simulated data during inference. 108 pairs of labelled MR and TRUS images from 76 prostate cancer patients and 71,500 nonlinear finite-element simulations from 143 different patients were used for this study. We show that, with only gland segmentation as training labels, the proposed method can help predict physically plausible deformation without any other smoothness penalty. Based on cross-validation experiments using 834 pairs of independent validation landmarks, the proposed adversarial-regularized registration achieved a target registration error of 6.3 mm that is significantly lower than those from several other regularization methods.
引用
收藏
页码:774 / 782
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 2018 IEEE 15 INT S B
[2]  
Cao Xiaohuan, 2017, Med Image Comput Comput Assist Interv, V10433, P300, DOI 10.1007/978-3-319-66182-7_35
[3]   End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network [J].
de Vos, Bob D. ;
Berendsen, Floris F. ;
Viergever, Max A. ;
Staring, Marius ;
Isgum, Ivana .
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, 2017, 10553 :204-212
[4]   NiftyNet: a deep-learning platform for medical imaging [J].
Gibson, Eli ;
Li, Wenqi ;
Sudre, Carole ;
Fidon, Lucas ;
Shakir, Dzhoshkun I. ;
Wang, Guotai ;
Eaton-Rosen, Zach ;
Gray, Robert ;
Doel, Tom ;
Hu, Yipeng ;
Whyntie, Tom ;
Nachev, Parashkev ;
Modat, Marc ;
Barratt, Dean C. ;
Ourselin, Sebastien ;
Cardoso, M. Jorge ;
Vercauteren, Tom .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 :113-122
[5]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[6]   MR to ultrasound registration for image-guided prostate interventions [J].
Hu, Yipeng ;
Ahmed, Hashirn Uddin ;
Taylor, Zeike ;
Allen, Clare ;
Emberton, Mark ;
Hawkes, David ;
Barratt, Dean .
MEDICAL IMAGE ANALYSIS, 2012, 16 (03) :687-703
[7]   NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics [J].
Johnsen, Stian F. ;
Taylor, Zeike A. ;
Clarkson, Matthew J. ;
Hipwell, John ;
Modat, Marc ;
Eiben, Bjoern ;
Han, Lianghao ;
Hu, Yipeng ;
Mertzanidou, Thomy ;
Hawkes, David J. ;
Ourselin, Sebastien .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2015, 10 (07) :1077-1095
[8]   Statistical Biomechanical Surface Registration: Application to MR-TRUS Fusion for Prostate Interventions [J].
Khallaghi, Siavash ;
Sanchez, C. Antonio ;
Rasoulian, Abtin ;
Nouranian, Saman ;
Romagnoli, Cesare ;
Abdi, Hamidreza ;
Chang, Silvia D. ;
Black, Peter C. ;
Goldenberg, Larry ;
Morris, William J. ;
Spadinger, Ingrid ;
Fenster, Aaron ;
Ward, Aaron ;
Fels, Sidney ;
Abolmaesumi, Purang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (12) :2535-2549
[9]   Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge [J].
Litjens, Geert ;
Toth, Robert ;
van de Ven, Wendy ;
Hoeks, Caroline ;
Kerkstra, Sjoerd ;
van Ginneken, Bram ;
Vincent, Graham ;
Guillard, Gwenael ;
Birbeck, Neil ;
Zhang, Jindang ;
Strand, Robin ;
Malmberg, Filip ;
Ou, Yangming ;
Davatzikos, Christos ;
Kirschner, Matthias ;
Jung, Florian ;
Yuan, Jing ;
Qiu, Wu ;
Gao, Qinquan ;
Edwards, Philip Eddie ;
Maan, Bianca ;
van der Heijden, Ferdinand ;
Ghose, Soumya ;
Mitra, Jhimli ;
Dowling, Jason ;
Barratt, Dean ;
Huisman, Henkjan ;
Madabhushi, Anant .
MEDICAL IMAGE ANALYSIS, 2014, 18 (02) :359-373
[10]  
Radford A., 2015, COMPUTER SCI