Spectral Unmixing of Hyperspectral Imagery Using Multilayer NMF

被引:135
作者
Rajabi, Roozbeh [1 ]
Ghassemian, Hassan [1 ]
机构
[1] Tarbiat Modares Univ, Fac Elect & Comp Engn, Tehran, Iran
关键词
Hyperspectral imaging; multilayer NMF (MLNMF); nonnegative matrix factorization (NMF); sparseness constraint; spectral unmixing; FACTORIZATION; ALGORITHM;
D O I
10.1109/LGRS.2014.2325874
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral images contain mixed pixels due to low spatial resolution of hyperspectral sensors. Spectral unmixing problem refers to decomposing mixed pixels into a set of endmembers and abundance fractions. Due to nonnegativity constraint on abundance fractions, nonnegative matrix factorization (NMF) methods have been widely used for solving spectral unmixing problem. In this letter we proposed using multilayer NMF (MLNMF) for the purpose of hyperspectral unmixing. In this approach, spectral signature matrix can be modeled as a product of sparse matrices. In fact MLNMF decomposes the observation matrix iteratively in a number of layers. In each layer, we applied sparseness constraint on spectral signature matrix as well as on abundance fractions matrix. In this way signatures matrix can be sparsely decomposed despite the fact that it is not generally a sparse matrix. The proposed algorithm is applied on synthetic and real data sets. Synthetic data is generated based on endmembers from U. S. Geological Survey spectral library. AVIRIS Cuprite data set has been used as a real data set for evaluation of proposed method. Results of experiments are quantified based on SAD and AAD measures. Results in comparison with previously proposed methods show that the multilayer approach can unmix data more effectively.
引用
收藏
页码:38 / 42
页数:5
相关论文
共 21 条
[1]  
[Anonymous], 2008, IGARSS 2008, DOI DOI 10.1109/IGARSS.2008.4779330
[2]   Unmixing of Hyperspectral Images using Bayesian Non-negative Matrix Factorization with Volume Prior [J].
Arngren, Morten ;
Schmidt, Mikkel N. ;
Larsen, Jan .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 65 (03) :479-496
[3]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[4]   Multilayer nonnegative matrix factorisation [J].
Cichocki, A. ;
Zdunek, R. .
ELECTRONICS LETTERS, 2006, 42 (16) :947-948
[5]  
Cichocki A, 2007, LECT NOTES COMPUT SC, V4432, P271
[6]  
Clark R., IMAGING SPECTROSCOPY
[7]   Nonlinear Unmixing of Hyperspectral Images [J].
Dobigeon, Nicolas ;
Tourneret, Jean-Yves ;
Richard, Cedric ;
Bermudez, Jose Carlos M. ;
McLaughlin, Stephen ;
Hero, Alfred O. .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :82-94
[8]   Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J].
Heinz, DC ;
Chang, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03) :529-545
[9]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[10]   Spectral unmixing [J].
Keshava, N ;
Mustard, JF .
IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) :44-57