Complete moment convergence for double-indexed randomly weighted sums and its applications

被引:22
作者
Wang, Xuejun [1 ]
Wu, Yi [1 ]
Hu, Shuhe [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Complete moment convergence; complete convergence; randomly weighted sums; nonparametric regression model; state observers; linear-time-invariant systems; NSD RANDOM-VARIABLES; DEPENDENT RANDOM-VARIABLES; FIXED-DESIGN REGRESSION; NONPARAMETRIC REGRESSION; MAXIMAL INEQUALITIES; MIXING SEQUENCES; QUADRATIC-FORMS; TIME-SERIES; ASSOCIATION; ARRAYS;
D O I
10.1080/02331888.2018.1436548
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we mainly study the complete moment convergence of double-indexed randomly weighted sums of negatively superadditive-dependent (NSD, for short) random variables, which is stronger than complete convergence. In addition, the convergence of double-indexed randomly weighted sums of NSD random variables is also obtained. As applications, we obtain the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors, and study the almost sure convergence and mean square convergence of the state observers of linear-time-invariant systems.
引用
收藏
页码:503 / 518
页数:16
相关论文
共 37 条
[1]  
ALAM K, 1981, COMMUN STAT A-THEOR, V10, P1183
[2]   CONVERGENCE RATES IN LAW OF LARGE NUMBERS [J].
BAUM, LE ;
KATZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) :108-&
[4]  
Chow Y. S., 1988, B I MATH ACAD SIN, V16, P177
[5]   A connection between supermodular ordering and positive/negative association [J].
Christofides, TC ;
Vaggelatou, E .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 88 (01) :138-151
[6]   On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables [J].
Eghbal, N. ;
Amini, M. ;
Bozorgnia, A. .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) :1112-1120
[7]   Some maximal inequalities for quadratic forms of negative superadditive dependence random variables [J].
Eghbal, N. ;
Amini, M. ;
Bozorgnia, A. .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (7-8) :587-591
[8]   ON A THEOREM OF HSU AND ROBBINS [J].
ERDOS, P .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (02) :286-291
[9]   CONSISTENT NONPARAMETRIC MULTIPLE-REGRESSION FOR DEPENDENT HETEROGENEOUS PROCESSES - THE FIXED DESIGN CASE [J].
FAN, Y .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 33 (01) :72-88
[10]  
Georgiev AA., 1985, P 4 PANN S MATH STAT, VB, P141