On the Finiteness of the Brauer Group of an Arithmetic Scheme

被引:2
作者
Tankeev, S. G. [1 ]
机构
[1] Vladimir State Univ, Vladimir, Russia
基金
俄罗斯基础研究基金会;
关键词
Brauer group; arithmetic model; K3; surface; Enriques surface; Calabi-Yau variety; Artin conjecture;
D O I
10.1134/S0001434614010131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Artin conjecture on the finiteness of the Brauer group is shown to hold for an arithmetic model of a K3 surface over a number field k. The Brauer group of an arithmetic model of an Enriques surface over a sufficiently large number field is shown to be a 2-group. For almost all prime numbers l, the triviality of the l-primary component of the Brauer group of an arithmetic model of a smooth projective simply connected Calabi-Yau variety V over a number field k under the assumption that V (k) not equal empty set is proved.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 1968, Advanced Studies in Pure Mathematics, V3, P46
[2]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[3]  
Bourbaki N., 1963, ALGEBRA POLYNOMIALS
[4]  
Cassels J. W. S., 1967, Algebraic number theory
[5]  
Colliot-Thélène JL, 2013, T AM MATH SOC, V365, P579
[6]   Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points [J].
Colliot-Thelene, JL ;
Skorobogatov, AN ;
Swinnerton-Dyer, P .
INVENTIONES MATHEMATICAE, 1998, 134 (03) :579-650
[7]  
FOMENKO AT, 1989, COURSE HOMOTOPIC TOP
[8]  
Godement R., 1960, TOPOLOGIE ALGEBRIQUE
[9]  
Griffiths P., 1978, Principles of algebraic geometry, VI
[10]  
Lang S., 1954, Amer. J. Math., V76, P819, DOI 10.2307/2372655