Iterative schemes for computing fixed points of nonexpansive mappings in Banach spaces

被引:20
作者
Chancelier, Jean-Philippe [1 ]
机构
[1] Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Champs Sur Marne 2, Marne La Vallee, France
关键词
Nonexpansive mappings; Viscosity approximation; Fixed point; Meir-Keeler contraction; VISCOSITY APPROXIMATION METHODS; STRONG-CONVERGENCE; FAMILY;
D O I
10.1016/j.jmaa.2008.11.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a real Banach space with a normalized duality mapping uniformly norm-to-weak* continuous on bounded sets or a reflexive Banach space which admits a weakly continuous duality mapping J phi with gauge phi. Let f be an alpha-contraction and (T-n) a sequence of nonexpansive mappings, we study the strong convergence of explicit iterative schemes x(n+1) = alpha(n)f (x(n)) + (1 - alpha(n)) T(n)x(n) (1) with a general theorem and then recover and improve some specific cases studied in the literature [K. Aoyoma, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed point of a countable family of nonexpansive mappings, Nonlinear Anal. 67 (8) (2007) 2350-2360; G. Lopez, V. Martin, H.-K. Xu, Perturbation techniques for nonexpansive mappings with applications, Nonlinear Anal. Real World Appl., in press, available online 4 May 2008; H.-K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl, 298 (1) (2004) 279-291; T.-H. Kim, H.-K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (1-2) (2005) 51-60: Y. Song, R. Chen, Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings. Appl. Math. Comput. 180 (2006) 275-287; Y. Song, R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (1) (2006) 316-326; J. Chen. L. Zhang, T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, J. Math. Anal. Appl. 334 (2) (2007) 1450-1461; Y. Kimura. W. Takahashi, M. Toyoda, Convergence to common fixed points of a finite family of nonexpansive mappings, Arch. Math. 84 (2005) 350-3631. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 153
页数:13
相关论文
共 20 条
[1]   Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space [J].
Aoyama, Koji ;
Kimura, Yasunori ;
Takahashi, Wataru ;
Toyoda, Masashi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) :2350-2360
[2]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[3]   PROPERTIES OF FIXED-POINT SETS OF NONEXPANSIVE MAPPINGS IN BANACH SPACES [J].
BRUCK, RE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) :251-262
[4]   Viscosity approximation methods for nonexpansive mappings and monotone mappings [J].
Chen, Junmin ;
Zhang, Lijuan ;
Fan, Tiegang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :1450-1461
[5]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[6]  
Flam SD, 1997, MATH PROGRAM, V78, P29
[7]  
Goebel K., 1984, UNIFORM CONVEXITY HY
[8]   SOME GEOMETRIC PROPERTIES RELATED TO FIXED-POINT THEORY FOR NONEXPANSIVE MAPPINGS [J].
GOSSEZ, JP ;
DOZO, EL .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (03) :565-&
[9]   Strong convergence of modified Mann iterations [J].
Kim, TH ;
Xu, HK .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (1-2) :51-60
[10]   Convergence to common fixed points of a finite family of nonexpansive mappings [J].
Kimura, Y ;
Takahashi, W ;
Toyoda, M .
ARCHIV DER MATHEMATIK, 2005, 84 (04) :350-363