Superlinear Convergence of the GMRES for PDE-Constrained Optimization Problems

被引:6
|
作者
Axelsson, O. [1 ,2 ]
Karatson, J. [3 ,4 ,5 ]
机构
[1] Inst Geon AS CR, Dept Appl Math & Comp Sci, Ostrava, Czech Republic
[2] Inst Geon AS CR, Dept IT4Innovat, Ostrava, Czech Republic
[3] ELTE Univ, Dept Appl Anal, Budapest, Hungary
[4] ELTE Univ, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
[5] Tech Univ, Dept Anal, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Optimal control; preconditioners; superlinear convergence; EQUIVALENT OPERATORS; EQUATIONS; SOLVER;
D O I
10.1080/01630563.2018.1431928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal control problems for PDEs arise in many important applications. A main step in the solution process is the solution of the arising linear system, where the crucial point is usually finding a proper preconditioner. We propose both proper block diagonal and more involved preconditioners, and derive mesh independent superlinear convergence of the preconditioned GMRES iterations based on a compact perturbation property of the underlying operators.
引用
收藏
页码:921 / 936
页数:16
相关论文
共 50 条
  • [41] OPTE special issue on PDE-constrained optimization
    Michael Ulbrich
    Boris Vexler
    Optimization and Engineering, 2021, 22 : 1985 - 1987
  • [42] On the treatment of distributed uncertainties in PDE-constrained optimization
    Borzì A.
    Schulz V.
    Schillings C.
    von Winckel G.
    GAMM Mitteilungen, 2010, 33 (02) : 230 - 246
  • [43] PDE-constrained optimization in medical image analysis
    Mang, Andreas
    Gholami, Amir
    Davatzikos, Christos
    Biros, George
    OPTIMIZATION AND ENGINEERING, 2018, 19 (03) : 765 - 812
  • [44] PMHSS iteration method and preconditioners for Stokes control PDE-constrained optimization problems
    Cao, Shan-Mou
    Wang, Zeng-Qi
    NUMERICAL ALGORITHMS, 2021, 87 (01) : 365 - 380
  • [45] Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems
    Axelsson, Owe
    Farouq, Shiraz
    Neytcheva, Maya
    NUMERICAL ALGORITHMS, 2017, 74 (01) : 19 - 37
  • [46] A note on the superlinear convergence of GMRES
    Moret, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) : 513 - 516
  • [47] Efficient time domain decomposition algorithms for parabolic PDE-constrained optimization problems
    Liu, Jun
    Wang, Zhu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 2115 - 2133
  • [48] Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems
    Axelsson, Owe
    Farouq, Shiraz
    Neytcheva, Maya
    NUMERICAL ALGORITHMS, 2016, 73 (03) : 631 - 663
  • [49] A multi-level ADMM algorithm for elliptic PDE-constrained optimization problems
    Chen, Xiaotong
    Song, Xiaoliang
    Chen, Zixuan
    Yu, Bo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [50] A multi-level ADMM algorithm for elliptic PDE-constrained optimization problems
    Xiaotong Chen
    Xiaoliang Song
    Zixuan Chen
    Bo Yu
    Computational and Applied Mathematics, 2020, 39