Superlinear Convergence of the GMRES for PDE-Constrained Optimization Problems

被引:6
|
作者
Axelsson, O. [1 ,2 ]
Karatson, J. [3 ,4 ,5 ]
机构
[1] Inst Geon AS CR, Dept Appl Math & Comp Sci, Ostrava, Czech Republic
[2] Inst Geon AS CR, Dept IT4Innovat, Ostrava, Czech Republic
[3] ELTE Univ, Dept Appl Anal, Budapest, Hungary
[4] ELTE Univ, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
[5] Tech Univ, Dept Anal, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Optimal control; preconditioners; superlinear convergence; EQUIVALENT OPERATORS; EQUATIONS; SOLVER;
D O I
10.1080/01630563.2018.1431928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal control problems for PDEs arise in many important applications. A main step in the solution process is the solution of the arising linear system, where the crucial point is usually finding a proper preconditioner. We propose both proper block diagonal and more involved preconditioners, and derive mesh independent superlinear convergence of the preconditioned GMRES iterations based on a compact perturbation property of the underlying operators.
引用
收藏
页码:921 / 936
页数:16
相关论文
共 50 条
  • [31] ADAPTIVE MULTILEVEL INEXACT SQP METHODS FOR PDE-CONSTRAINED OPTIMIZATION
    Ziems, J. Carsten
    Ulbrich, Stefan
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (01) : 1 - 40
  • [32] Adaptive finite element methods for sparse PDE-constrained optimization
    Allendes, A.
    Fuica, F.
    Otarola, E.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (03) : 2106 - 2142
  • [33] Superlinear Convergence of the Sequential Quadratic Method in Constrained Optimization
    Mohammadi, Ashkan
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) : 731 - 758
  • [34] Superlinear Convergence of the Sequential Quadratic Method in Constrained Optimization
    Ashkan Mohammadi
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    Journal of Optimization Theory and Applications, 2020, 186 : 731 - 758
  • [35] A PDE-constrained optimization method for 3D-1D coupled problems with discontinuous solutions
    Berrone, Stefano
    Grappein, Denise
    Scialo, Stefano
    NUMERICAL ALGORITHMS, 2024, 95 (01) : 499 - 526
  • [36] An iDCA with Sieving Strategy for PDE-Constrained Optimization Problems with L1-2-Control Cost
    Zhang, Yu
    Song, Xiaoliang
    Yu, Bo
    Ding, Mingcai
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [37] An efficient duality-based approach for PDE-constrained sparse optimization
    Xiaoliang Song
    Bo Chen
    Bo Yu
    Computational Optimization and Applications, 2018, 69 : 461 - 500
  • [38] A feasible SQP method with superlinear convergence for general constrained optimization
    School of Computing Science and Mathematics, Guilin University of Electronic Technology, Guilin 541004, China
    J. Appl. Sci., 2007, 10 (1422-1427): : 1422 - 1427
  • [39] ON COMBINING FEASIBILITY, DESCENT AND SUPERLINEAR CONVERGENCE IN INEQUALITY CONSTRAINED OPTIMIZATION
    PANIER, ER
    TITS, AL
    MATHEMATICAL PROGRAMMING, 1993, 59 (02) : 261 - 276
  • [40] Adaptive multilevel trust-region methods for time-dependent PDE-constrained optimization
    Ulbrich, Stefan
    Ziems, Jan Carsten
    PORTUGALIAE MATHEMATICA, 2017, 74 (01) : 37 - 67