Superlinear Convergence of the GMRES for PDE-Constrained Optimization Problems

被引:6
|
作者
Axelsson, O. [1 ,2 ]
Karatson, J. [3 ,4 ,5 ]
机构
[1] Inst Geon AS CR, Dept Appl Math & Comp Sci, Ostrava, Czech Republic
[2] Inst Geon AS CR, Dept IT4Innovat, Ostrava, Czech Republic
[3] ELTE Univ, Dept Appl Anal, Budapest, Hungary
[4] ELTE Univ, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
[5] Tech Univ, Dept Anal, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Optimal control; preconditioners; superlinear convergence; EQUIVALENT OPERATORS; EQUATIONS; SOLVER;
D O I
10.1080/01630563.2018.1431928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal control problems for PDEs arise in many important applications. A main step in the solution process is the solution of the arising linear system, where the crucial point is usually finding a proper preconditioner. We propose both proper block diagonal and more involved preconditioners, and derive mesh independent superlinear convergence of the preconditioned GMRES iterations based on a compact perturbation property of the underlying operators.
引用
收藏
页码:921 / 936
页数:16
相关论文
共 50 条
  • [31] Symmetric indefinite preconditioners for saddle point problems with applications to pde-constrained optimization problems
    Schoeberl, Joachim
    Zulehner, Walter
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (03) : 752 - 773
  • [32] A MESHFREE METHOD FOR A PDE-CONSTRAINED OPTIMIZATION PROBLEM
    Hoff, Daniel
    Wendland, Holger
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 1896 - 1917
  • [33] Domain decomposition in time for PDE-constrained optimization
    Barker, Andrew T.
    Stoll, Martin
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 197 : 136 - 143
  • [34] PDE-Constrained Optimization: Matrix Structures and Preconditioners
    Dravins, Ivo
    Neytcheva, Maya
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 315 - 323
  • [35] PDE-constrained optimization with error estimation and control
    Hicken, J. E.
    Alonso, J. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 263 : 136 - 150
  • [36] PDE-constrained Optimization for Electroencephalographic Source Reconstruction
    M. S. Malovichko
    N. B. Yavich
    A. M. Razorenova
    V. I. Golubev
    N. A. Koshev
    Lobachevskii Journal of Mathematics, 2024, 45 (6) : 2875 - 2894
  • [37] THE SUPERLINEAR CONVERGENCE BEHAVIOR OF GMRES
    VANDERVORST, HA
    VUIK, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 48 (03) : 327 - 341
  • [38] Optical tomography as a PDE-constrained optimization problem
    Abdoulaev, GS
    Ren, K
    Hielseher, AH
    INVERSE PROBLEMS, 2005, 21 (05) : 1507 - 1530
  • [39] OPTE special issue on PDE-constrained optimization
    Ulbrich, Michael
    Vexler, Boris
    OPTIMIZATION AND ENGINEERING, 2021, 22 (04) : 1985 - 1987
  • [40] PDE-constrained optimization in medical image analysis
    Andreas Mang
    Amir Gholami
    Christos Davatzikos
    George Biros
    Optimization and Engineering, 2018, 19 : 765 - 812