Superlinear Convergence of the GMRES for PDE-Constrained Optimization Problems

被引:6
|
作者
Axelsson, O. [1 ,2 ]
Karatson, J. [3 ,4 ,5 ]
机构
[1] Inst Geon AS CR, Dept Appl Math & Comp Sci, Ostrava, Czech Republic
[2] Inst Geon AS CR, Dept IT4Innovat, Ostrava, Czech Republic
[3] ELTE Univ, Dept Appl Anal, Budapest, Hungary
[4] ELTE Univ, MTA ELTE Numer Anal & Large Networks Res Grp, Budapest, Hungary
[5] Tech Univ, Dept Anal, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Optimal control; preconditioners; superlinear convergence; EQUIVALENT OPERATORS; EQUATIONS; SOLVER;
D O I
10.1080/01630563.2018.1431928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal control problems for PDEs arise in many important applications. A main step in the solution process is the solution of the arising linear system, where the crucial point is usually finding a proper preconditioner. We propose both proper block diagonal and more involved preconditioners, and derive mesh independent superlinear convergence of the preconditioned GMRES iterations based on a compact perturbation property of the underlying operators.
引用
收藏
页码:921 / 936
页数:16
相关论文
共 50 条
  • [1] OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION
    Rees, Tyrone
    Dollar, H. Sue
    Wathen, Andrew J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01) : 271 - 298
  • [2] A note on multigrid preconditioning for fractional PDE-constrained optimization problems
    Antil, Harbir
    Draganescu, Andrei
    Green, Kiefer
    RESULTS IN APPLIED MATHEMATICS, 2021, 9 (09):
  • [3] Superlinear convergence of the control reduced interior point method for PDE constrained optimization
    Anton Schiela
    Martin Weiser
    Computational Optimization and Applications, 2008, 39 : 369 - 393
  • [4] Superlinear convergence of the control reduced interior point method for PDE constrained optimization
    Schiela, Anton
    Weiser, Martin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 39 (03) : 369 - 393
  • [5] Domain decomposition in time for PDE-constrained optimization
    Barker, Andrew T.
    Stoll, Martin
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 197 : 136 - 143
  • [6] PDE-Constrained Optimization: Matrix Structures and Preconditioners
    Dravins, Ivo
    Neytcheva, Maya
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 315 - 323
  • [7] PDE-constrained Optimization for Electroencephalographic Source Reconstruction
    M. S. Malovichko
    N. B. Yavich
    A. M. Razorenova
    V. I. Golubev
    N. A. Koshev
    Lobachevskii Journal of Mathematics, 2024, 45 (6) : 2875 - 2894
  • [8] PDE-constrained optimization in medical image analysis
    Andreas Mang
    Amir Gholami
    Christos Davatzikos
    George Biros
    Optimization and Engineering, 2018, 19 : 765 - 812
  • [9] Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems
    Wu, Shu-Lin
    Zhou, Tao
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [10] PDE-constrained optimization in medical image analysis
    Mang, Andreas
    Gholami, Amir
    Davatzikos, Christos
    Biros, George
    OPTIMIZATION AND ENGINEERING, 2018, 19 (03) : 765 - 812