MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT HYPERBOLIC 3-MANIFOLDS
被引:16
作者:
Collin, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, FranceUniv Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
Collin, Pascal
[1
]
Hauswirth, Laurent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, F-77454 Marne La Vallee, FranceUniv Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
Hauswirth, Laurent
[2
]
论文数: 引用数:
h-index:
机构:
Mazet, Laurent
[3
]
Rosenberg, Harold
论文数: 0引用数: 0
h-index: 0
机构:
Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, BrazilUniv Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
Rosenberg, Harold
[4
]
机构:
[1] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[2] Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, F-77454 Marne La Vallee, France
[3] Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, 61 Ave Gen Gaulle, F-94010 Creteil, France
[4] Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
We prove there exists a compact embedded minimal surface in a complete finite volume hyperbolic 3-manifold N. We also obtain a least area, incompressible, properly embedded, finite topology, 2-sided surface. We prove a properly embedded minimal surface of bounded curvature has finite topology. This determines its asymptotic behavior. Some rigidity theorems are obtained.