MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT HYPERBOLIC 3-MANIFOLDS

被引:16
作者
Collin, Pascal [1 ]
Hauswirth, Laurent [2 ]
Mazet, Laurent [3 ]
Rosenberg, Harold [4 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[2] Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, F-77454 Marne La Vallee, France
[3] Univ Paris Est, CNRS, LAMA UMR 8050, UPEC,UPEM, 61 Ave Gen Gaulle, F-94010 Creteil, France
[4] Inst Nacl Matemat Pura & Aplicada IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
EXISTENCE;
D O I
10.1090/tran/6859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove there exists a compact embedded minimal surface in a complete finite volume hyperbolic 3-manifold N. We also obtain a least area, incompressible, properly embedded, finite topology, 2-sided surface. We prove a properly embedded minimal surface of bounded curvature has finite topology. This determines its asymptotic behavior. Some rigidity theorems are obtained.
引用
收藏
页码:4293 / 4309
页数:17
相关论文
共 22 条
[1]   THRICE-PUNCTURED SPHERES IN HYPERBOLIC 3-MANIFOLDS [J].
ADAMS, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 287 (02) :645-656
[2]   COMPLETE MINIMAL HYPERSURFACES IN HYPERBOLIC N-MANIFOLDS [J].
ANDERSON, MT .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) :264-290
[3]  
[Anonymous], 1983, P CTR MATH ANAL AUST
[4]  
Benedetti R., 1991, Lectures on Hyperbolic Geometry
[5]  
Colding T., 2003, Surveys in Differential Geometry VIII, P75
[6]  
Collin Pascal, AM J MATH IN PRESS
[7]  
Francis George K., 1987, TOPOLOGICAL PICTUREB
[8]  
Gieseking H., 1912, THESIS
[9]   THE EXISTENCE OF LEAST AREA SURFACES IN 3-MANIFOLDS [J].
HASS, J ;
SCOTT, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 310 (01) :87-114
[10]  
Hass J, 1999, J DIFFER GEOM, V52, P303