The strong law of large numbers for d-dimensional arrays in von Neumann algebras

被引:0
|
作者
Quang, NV [1 ]
Tien, ND [1 ]
机构
[1] UNIV HANOI, HANOI, VIETNAM
关键词
von Neumann algebra; strong law of large numbers;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let A be a von Neumann algebra with faithful normal tracial state r; let (A) over tilde be the *-algebra of measurable operators in Segal's sense. The aim of this paper is to show that if an array (x((n) over bar), (n) over bar is an element of N-d) of self-adjoint pairwise independent identically distributed elements in (A) over tilde satisfies the condition r(\x((1) over bar\(log(+)\x((1) over bar)\)(d-1)) <infinity, then [GRAPHICS] converges to r(x((1) over bar)) bilaterally almost uniformly (where (n) over bar = (n(1),...,n(d)), (k) over bar = (k(1),...,k(d)), (1) over bar =(1,...,1)is an element of N-d).
引用
收藏
页码:569 / 578
页数:10
相关论文
共 50 条