Continuous Functions and Riesz Type Potentials in Homogeneous Spaces

被引:0
作者
Sjodin, Tord [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
关键词
Homogeneous space; Doubling measure; Kernel; Potential; Energy; Capacity; Capacitary potential; Approximate identity; Dyadic cubes;
D O I
10.1007/s11118-015-9483-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a potential theory for a Riesz type kernel in a homogeneous space and characterize the compact sets K with capacity zero as the sets K for which every continous function f on K is the restriction to K of a continuous potential of an absolutely continuous measure sigma (f) supported in an arbitrarily small neighbourhood of K. The measure sigma (f) can be choosen as a suitable restriction of a single measure sigma that only depends on the set K and the kernel k.
引用
收藏
页码:495 / 511
页数:17
相关论文
共 50 条
  • [31] Metrics of homogeneous spaces admitting (3.1)-type complete sets
    Obukhov V.V.
    Osetrin K.E.
    Filippov A.E.
    Russian Physics Journal, 2002, 45 (1) : 42 - 48
  • [32] Large deviations for Riesz potentials of additive processes
    Bass, Richard
    Chen, Xia
    Rosen, Jay
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 626 - 666
  • [33] Wavelet characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and its applications
    He, Ziyi
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 54 (54) : 176 - 226
  • [34] On quasicompact homogeneous spaces
    Gorbatsevich, V. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (02) : 231 - 242
  • [35] CONVOLUTION AND HOMOGENEOUS SPACES
    Kamyabi-Gol, R. A.
    Tavallaei, N.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (01) : 129 - 146
  • [36] On quasicompact homogeneous spaces
    V. V. Gorbatsevich
    Siberian Mathematical Journal, 2013, 54 : 231 - 242
  • [37] Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity
    Baskakov, A. G.
    Strukov, V. E.
    Strukova, I. I.
    SBORNIK MATHEMATICS, 2019, 210 (10) : 1380 - 1427
  • [38] Homogeneous Spaces with Sections
    Andreas Kollross
    Evangelia Samiou
    manuscripta mathematica, 2005, 116 : 115 - 123
  • [40] Hardy-Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type
    Karlovich, Alexei
    STUDIA MATHEMATICA, 2020, 254 (02) : 149 - 178