fMRI Visual Image Reconstruction Using Sparse Logistic Regression with a Tunable Regularization Parameter

被引:0
|
作者
Wu, Hao [1 ]
Wang, Jiayi [1 ]
Chen, Badong [1 ]
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2015 | 2015年 / 9403卷
关键词
fMRI; Visual image reconstruction; Sparse regression; HUMAN BRAIN ACTIVITY; NATURAL IMAGES; CORTEX; ORGANIZATION; RESPONSES;
D O I
10.1007/978-3-319-25159-2_77
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
fMRI has been a popular way for encoding and decoding human visual cortex activity. A previous research reconstructed binary image using a sparse logistic regression (SLR) with fMRI activity patterns as its input. In this article, based on SLR, we propose a new sparse logistic regression with a tunable regularization parameter (SLR-T), which includes the SLR and maximum likelihood regression (MLR) as two special cases. By choosing a proper regularization parameter in SLR-T, it may yield a better performance than both SLR and MLR. An fMRI visual image reconstruction experiment is carried out to verify the performance of SLR-T.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 13 条
  • [1] Sparse models for visual image reconstruction from fMRI activity
    Wang, Linyuan
    Tong, Li
    Yan, Bin
    Wang, Lijun
    Zeng, Ying
    Hu, Guoen
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 2963 - 2969
  • [2] Comparative study of two Sparse Multinomial Logistic Regression models in decoding visual stimuli from brain activity of fMRI
    Song, Sutao
    Chen, Gongxiang
    Zhan, Yu
    Zhang, Jiacai
    Yao, Li
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [3] Visual Field Reconstruction Using fMRI-Based Techniques
    Carvalho, Joana
    Invernizzi, Azzurra
    Martins, Joana
    Jansonius, Nomdo M.
    Renken, Remco J.
    Cornelissen, Frans W.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (01): : 1 - 18
  • [4] Predictive sparse modeling of fMRI data for improved classification, regression, and visualization using the k-support norm
    Belilovsky, Eugene
    Gkirtzou, Katerina
    Misyrlis, Michail
    Konova, Anna B.
    Honorio, Jean
    Alia-Klein, Nelly
    Goldstein, Rita Z.
    Samaras, Dimitris
    Blaschko, Matthew B.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 46 : 40 - 46
  • [5] Visual Field Reconstruction in Hemianopia Using fMRI Based Mapping Techniques
    Halbertsma, Hinke N.
    Bridge, Holly
    Carvalho, Joana
    Cornelissen, Frans W.
    Ajina, Sara
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [6] Natural Image Reconstruction From fMRI Using Deep Learning: A Survey
    Rakhimberdina, Zarina
    Jodelet, Quentin
    Liu, Xin
    Murata, Tsuyoshi
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [7] Reconstruction of Visual Image From Functional Magnetic Resonance Imaging Using Spiking Neuron Model
    Ma, Yongqiang
    Wu, Hao
    Zhu, Mengjiao
    Ren, Pengju
    Zheng, Nanning
    Chen, Badong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2018, 10 (03) : 624 - 636
  • [8] Dual-Guided Brain Diffusion Model: Natural Image Reconstruction from Human Visual Stimulus fMRI
    Meng, Lu
    Yang, Chuanhao
    BIOENGINEERING-BASEL, 2023, 10 (10):
  • [9] Estimation of force direction from functional near-infrared spectroscopy signals using sparse logistic regression.
    Sato, Takanori
    Muto, Yasuyuki
    Nambu, Isao
    Wada, Yasuhiro
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 4639 - 4642
  • [10] QMVO-SCDL: A new regression model for fMRI pain decoding using quantum-behaved sparse dictionary learning
    Anter, Ahmed M.
    Elnashar, Hany S.
    Zhang, Zhiguo
    KNOWLEDGE-BASED SYSTEMS, 2022, 252