Achieving high hydrogen evolution reaction activity of a Mo2C monolayer

被引:13
作者
Lou, Huan [1 ,2 ,3 ]
Yu, Tong [1 ,2 ]
Ma, Jiani [1 ,2 ]
Zhang, Shoutao [1 ,2 ]
Bergara, Aitor [4 ,5 ,6 ]
Yang, Guochun [1 ,2 ,3 ]
机构
[1] Northeast Normal Univ, Minist Educ, Ctr Adv Optoelect Funct Mat Res, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Minist Educ, Key Lab UV Light Emitting Mat & Technol, Changchun 130024, Peoples R China
[3] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[4] Univ Pais Vasco Euskal Herriko Unibertsitatea, UPV EHU, Dept Fis Mat Condensada, Bilbao 48080, Spain
[5] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[6] Univ Basque Country, CSIC, Ctr Mixto, Ctr Fis Mat CFM, Donostia San Sebastian 20018, Spain
关键词
TOTAL-ENERGY CALCULATIONS; EFFICIENT ELECTROCATALYST; CATALYTIC-PROPERTIES; OXYGEN REDUCTION; MOS2; NANOSHEETS; MXENES; G-C3N4; DEFECT; NI;
D O I
10.1039/d0cp05053a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional Mo2C materials (1T and 2H phases) have emerged as promising electrocatalysts for the hydrogen evolution reaction (HER) due to their low cost, inherent metallicity, and high stability. Unfortunately, the catalytic activity of Mo2C is lower than that of Pt, and it needs to be substantially improved for practical applications. It is necessary and urgent to consider the effect of synergetic interactions among defects, functions, and strain on the HER activity. In this study, the geometric structures, electronic properties, and the HER activity of the Mo2C monolayer, with vacancy defects (i.e. Mo and C), oxygen functionalization, and strain, are studied by using first-principles calculations. According to our results, the combination of Mo vacancies, which can be obtained under C-rich conditions, and oxygen functionalization is the most effective way to improve the HER activity of 1T- and 2H-Mo2C. Considering the abundant active sites and optimal Gibbs free energy of hydrogen adsorption, the 1T phase we obtained shows excellent HER activity even at high H coverage and improves the utilization of active sites, for which the HER activity is comparable to that of Pt. This can be attributed to the fact that oxygen atoms gain more electrons from Mo2C, which weakens the strength of the O-H bond. Our work provides not only an opportunity to better understand the catalytic mechanism, but also a guide to achieving high HER activity of a Mo2C monolayer.
引用
收藏
页码:26189 / 26199
页数:11
相关论文
共 99 条
[1]   Developments and Perspectives in 3d Transition-Metal-Based Electrocatalysts for Neutral and Near-Neutral Water Electrolysis [J].
Anantharaj, Sengeni ;
Aravindan, Vanchiappan .
ADVANCED ENERGY MATERIALS, 2020, 10 (01)
[2]   Hydrophilic Nitrogen and Sulfur Co-doped Molybdenum Carbide Nanosheets for Electrochemical Hydrogen Evolution [J].
Ang, Huixiang ;
Tan, Hui Teng ;
Luo, Zhi Min ;
Zhang, Yu ;
Guo, Yuan Yuan ;
Guo, Guilue ;
Zhang, Hua ;
Yan, Qingyu .
SMALL, 2015, 11 (47) :6278-6284
[3]   Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2 [J].
Avsar, Ahmet ;
Ciarrocchi, Alberto ;
Pizzochero, Michele ;
Unuchek, Dmitrii ;
Yazyev, Oleg V. ;
Kis, Andras .
NATURE NANOTECHNOLOGY, 2019, 14 (07) :674-+
[4]   Highly Dispersed Ruthenium-Based Multifunctional Electrocatalyst [J].
Bai, Lu ;
Duan, Zhiyao ;
Wen, Xudong ;
Si, Rui ;
Zhang, Qiaoqiao ;
Guan, Jingqi .
ACS CATALYSIS, 2019, 9 (11) :9897-9904
[5]   Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-Dimensional Titanium Carbide (MXene): Intercalation and Pseudocapacitance [J].
Boota, Muhammad ;
Pasini, Mariacecilia ;
Galeotti, Francesco ;
Porzio, William ;
Zhao, Meng-Qiang ;
Halim, Joseph ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (07) :2731-2738
[6]   N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides [J].
Cai, Jinyan ;
Song, Yao ;
Zang, Yipeng ;
Niu, Shuwen ;
Wu, Yishang ;
Xie, Yufang ;
Zheng, Xusheng ;
Liu, Yun ;
Lin, Yue ;
Liu, Xiaojing ;
Wang, Gongming ;
Qian, Yitai .
SCIENCE ADVANCES, 2020, 6 (01)
[7]   Design of Dual-Modified MoS2 with Nanoporous Ni and Graphene as Efficient Catalysts for the Hydrogen Evolution Reaction [J].
Chen, Li Xin ;
Chen, Zhi Wen ;
Wang, Yu ;
Yang, Chun Cheng ;
Jiang, Qing .
ACS CATALYSIS, 2018, 8 (09) :8107-8114
[8]   Balancing volumetric and gravimetric uptake in highly porous materials for clean energy [J].
Chen, Zhijie ;
Li, Penghao ;
Anderson, Ryther ;
Wang, Xingjie ;
Zhang, Xuan ;
Robison, Lee ;
Redfern, Louis R. ;
Moribe, Shinya ;
Islamoglu, Timur ;
Gomez-Gualdron, Diego A. ;
Yildirim, Taner ;
Stoddart, J. Fraser ;
Farha, Omar K. .
SCIENCE, 2020, 368 (6488) :297-+
[9]   Carbon-Defect-Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution [J].
Cheng, Qingqing ;
Hu, Chuangang ;
Wang, Guoliang ;
Zou, Zhiqing ;
Yang, Hui ;
Dai, Liming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) :5594-5601
[10]   Shrunken hollow Mo-N/Mo-C nanosphere structure for efficient hydrogen evolution in a broad pH range [J].
Cheng, Ruilin ;
He, Honglin ;
Pu, Zonghua ;
Amiinu, Ibrahim Saana ;
Chen, Lei ;
Wang, Zhe ;
Li, Guoqiang ;
Mu, Shichun .
ELECTROCHIMICA ACTA, 2019, 298 :799-805