Lie transformation group solutions of non-linear equations describing viscoelastic materials

被引:9
作者
Jena, J [1 ]
Sharma, VD [1 ]
机构
[1] INDIAN INST TECHNOL,DEPT MATH,BOMBAY 400076,MAHARASHTRA,INDIA
关键词
D O I
10.1016/S0020-7225(97)00015-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The method of solutions by Lie group invariance under infinitesimal point transformation is presented here for the non-linear partial differential equations describing viscoelastic materials. The intent is the systematic determination of a complete class of exact solutions that exhibit space-time dependence. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:1033 / 1044
页数:12
相关论文
共 13 条
[1]  
AMES WF, 1972, NONLINEAR PARTIAL DI, V2
[2]  
AMES WF, 1965, NONLINEAR PARTIAL DI, V1
[3]  
Bluman G. W., 1989, Symmetries and Differential Equations
[4]  
Bluman G. W., 1974, Similarity methods for differential equations
[5]   GROUP-ANALYSIS FOR A LINEAR HYPERBOLIC EQUATION ARISING FROM A QUASILINEAR REDUCIBLE SYSTEM [J].
FUSCO, D ;
DONATO, A ;
AMES, WF .
WAVE MOTION, 1984, 6 (05) :517-524
[6]   SIMILARITY SOLUTIONS AND MODEL CONSTITUTIVE LAWS TO VISCOELASTICITY WITH APPLICATION TO NONLINEAR-WAVE PROPAGATION [J].
FUSCO, D ;
PALUMBO, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (01) :78-92
[7]   GROUP-ANALYSIS APPROACH FOR A BINARY REACTING MIXTURE [J].
LALICATA, MV ;
TORRISI, M .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1994, 29 (03) :279-288
[8]   ON A NEW THERMODYNAMIC DESCRIPTION OF VISCOELASTIC MATERIALS [J].
LEBON, G ;
PEREZGARCIA, C ;
CASASVAZQUEZ, J .
PHYSICA A, 1986, 137 (03) :531-545
[9]   SIMILARITY SOLUTIONS FOR REACTIVE SHOCK HYDRODYNAMICS [J].
LOGAN, JD ;
PEREZ, JD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (03) :512-527
[10]  
Ovsiannikov L.V., 1962, GROUP PROPERTIES DIF