ON SOME CONGRUENCES INVOLVING TRINOMIAL COEFFICIENTS

被引:1
作者
Mao, Guo-Shuai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
congruences; trinomial coefficients; Legendre symbol; Lucas sequences; BERNOULLI; SUPERCONGRUENCES; NUMBERS; PROOF;
D O I
10.1216/rmj.2020.50.1759
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize some congruences which were proved by M. Apagodu and J.-C. Liu (2020) involving trinomial coefficients, and we obtain a supercongruence for trinomial coefficients which contains a congruence proved by Apagodu and Liu (2020).
引用
收藏
页码:1759 / 1771
页数:13
相关论文
共 25 条
[11]   On two congruence conjectures [J].
Mao, Guo-Shuai ;
Cao, Zhi-Jian .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (11-12) :815-822
[12]   On some congruences involving Domb numbers and harmonic numbers [J].
Mao, Guo-Shuai ;
Wang, Jie .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (10) :2179-2200
[13]   Symbolic summation methods and congruences involving harmonic numbers [J].
Mao, Guo-Shuai ;
Wang, Chen ;
Wang, Jie .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (10) :756-765
[14]   Proof of two conjectural supercongruences involving Catalan-Larcombe-French numbers [J].
Mao, Guo-Shuai .
JOURNAL OF NUMBER THEORY, 2017, 179 :88-96
[15]   Supercongruences on some binomial sums involving Lucas sequences [J].
Mao, Guo-Shuai ;
Pan, Hao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1061-1078
[16]   Two congruences involving harmonic numbers with applications [J].
Mao, Guo-Shuai ;
Sun, Zhi-Wei .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (02) :527-539
[17]  
Mestrovic R., 2011, 11113057 ARXIV
[18]   SUPERCONGRUENCES FOR SPORADIC SEQUENCES [J].
Osburn, Robert ;
Sahu, Brundaban ;
Straub, Armin .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (02) :503-518
[19]  
Sills A., 2017, INVITATION ROGERS RA, DOI DOI 10.1201/9781315151922, Patent No. [9,963,650, 9963650]
[20]   Congruences involving Bernoulli and Euler numbers [J].
Sun, Zhi-Hong .
JOURNAL OF NUMBER THEORY, 2008, 128 (02) :280-312