ON SOME CONGRUENCES INVOLVING TRINOMIAL COEFFICIENTS

被引:1
作者
Mao, Guo-Shuai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
congruences; trinomial coefficients; Legendre symbol; Lucas sequences; BERNOULLI; SUPERCONGRUENCES; NUMBERS; PROOF;
D O I
10.1216/rmj.2020.50.1759
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize some congruences which were proved by M. Apagodu and J.-C. Liu (2020) involving trinomial coefficients, and we obtain a supercongruence for trinomial coefficients which contains a congruence proved by Apagodu and Liu (2020).
引用
收藏
页码:1759 / 1771
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 1988, THESIS
[2]  
Apagodu M., 2020, INTEGERS, V20
[3]   Elementary proof of congruences involving sum of binomial coefficients [J].
Apagodu, Moa .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (06) :1547-1557
[4]   Using the "Freshman's Dream" to Prove Combinatorial Congruences [J].
Apagodu, Moa ;
Zeilberger, Doron .
AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (07) :597-608
[5]   SOME CONGRUENCES INVOLVING BINOMIAL COEFFICIENTS [J].
Cao, Hui-Qin ;
Sun, Zhi-Wei .
COLLOQUIUM MATHEMATICUM, 2015, 139 (01) :127-136
[6]   Sporadic sequences, modular forms and new series for 1/π [J].
Cooper, Shaun .
RAMANUJAN JOURNAL, 2012, 29 (1-3) :163-183
[7]   SOME CONGRUENCES FOR APERY NUMBERS [J].
GESSEL, I .
JOURNAL OF NUMBER THEORY, 1982, 14 (03) :362-368
[8]   Values of Bernoulli polynomials [J].
Granville, A ;
Sun, ZW .
PACIFIC JOURNAL OF MATHEMATICS, 1996, 172 (01) :117-137
[9]   On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J].
Lehmer, E .
ANNALS OF MATHEMATICS, 1938, 39 :350-360
[10]   On two conjectural supercongruences of Apagodu and Zeilberger [J].
Liu, Ji-Cai .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (12) :1791-1799