Metabolic function of the CTRP family of hormones

被引:232
作者
Seldin, Marcus M. [1 ,2 ]
Tan, Stefanie Y. [1 ,2 ]
Wong, G. William [1 ,2 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Ctr Metab & Obes Res, Baltimore, MD 21205 USA
关键词
Adipokine; Obesity; Type; 2; diabetes; Insulin resistance; Gluconeognesis; Fat oxidation; ACTIVATED PROTEIN-KINASE; MOLECULAR-WEIGHT FORM; FATTY-ACID OXIDATION; SHORT-CHAIN COLLAGEN; LINKED-IMMUNOSORBENT-ASSAY; REPEAT-CONTAINING SEQUENCE; COMPLEMENT-RELATED PROTEIN; INDUCED INSULIN-RESISTANCE; CONSERVED LYSINE RESIDUES; ADIPOSE-SPECIFIC PROTEIN;
D O I
10.1007/s11154-013-9255-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Maintaining proper energy balance in mammals entails intimate crosstalk between various tissues and organs. These inter-organ communications are mediated, to a great extent, by secreted hormones that circulate in blood. Regulation of the complex metabolic networks by secreted hormones (e.g., insulin, glucagon, leptin, adiponectin, FGF21) constitutes an important mechanism governing the integrated control of whole-body metabolism. Disruption of hormone-mediated metabolic circuits frequently results in dysregulated energy metabolism and pathology. As part of an effort to identify novel metabolic hormones, we recently characterized a highly conserved family of 15 secreted proteins, the C1q/TNF-related proteins (CTRP1-15). While related to adiponectin in sequence and structural organization, each CTRP has its own unique tissue expression profile and non-redundant function in regulating sugar and/or fat metabolism. Here, we summarize the current understanding of the physiological functions of CTRPs, emphasizing their metabolic roles. Future studies using gain-of-function and loss-of-function mouse models will provide greater mechanistic insights into the critical role CTRPs play in regulating systemic energy homeostasis.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 158 条
[51]   C1q and tumor necrosis factor superfamily: modularity and versatility [J].
Kishore, U ;
Gaboriaud, C ;
Waters, P ;
Shrive, AK ;
Greenhough, TJ ;
Reid, KBM ;
Sim, RB ;
Arlaud, GJ .
TRENDS IN IMMUNOLOGY, 2004, 25 (10) :551-561
[52]   Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin [J].
Kobayashi, H ;
Ouchi, N ;
Kihara, S ;
Walsh, K ;
Kumada, M ;
Abe, Y ;
Funahashi, T ;
Matsuzawa, Y .
CIRCULATION RESEARCH, 2004, 94 (04) :E27-E31
[53]   C1q/TNF-Related Protein-3 Represents a Novel and Endogenous Lipopolysaccharide Antagonist of the Adipose Tissue [J].
Kopp, Andrea ;
Bala, Margarita ;
Buechler, Christa ;
Falk, Werner ;
Gross, Philipp ;
Neumeier, Markus ;
Schoelmerich, Juergen ;
Schaeffler, Andreas .
ENDOCRINOLOGY, 2010, 151 (11) :5267-5278
[54]   Disruption of adiponectin causes insulin resistance and neointimal formation. [J].
Kubota, N ;
Terauchi, Y ;
Yamauchi, T ;
Kubota, T ;
Moroi, M ;
Matsui, J ;
Eto, K ;
Yamashita, T ;
Kamon, J ;
Satoh, H ;
Yano, W ;
Froguel, P ;
Nagai, R ;
Kimura, S ;
Kadowaki, T ;
Noda, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :25863-25866
[55]   Adiponectin stimulates AMP-Activated protein kinase in the hypothalamus and increases food intake [J].
Kubota, Naoto ;
Yano, Wataru ;
Kubota, Tetsuya ;
Yamauchi, Toshimasa ;
Itoh, Shinsuke ;
Kumagai, Hiroki ;
Kozono, Hideki ;
Takamoto, Iseki ;
Okamoto, Shiki ;
Shiuchi, Tetsun ;
Suzuki, Ryo ;
Satoh, Hidemi ;
Tsuchida, Atsushi ;
Moroi, Masao ;
Sugi, Kaoru ;
Noda, Tetsuo ;
Ebinuma, Hiroyuki ;
Ueta, Yoichi ;
Kondo, Tatsuya ;
Araki, Eiichi ;
Ezaki, Osamu ;
Nagai, Ryozo ;
Tobe, Kazuyuki ;
Terauchi, Yasuo ;
Ueki, Kohjiro ;
Minokoshi, Yasuhiko ;
Kadowaki, Takashi .
CELL METABOLISM, 2007, 6 (01) :55-68
[56]   Crystal structure of the collagen α1 (VIII) NC1 trimer [J].
Kvansakul, M ;
Bogin, O ;
Hohenester, E ;
Yayon, A .
MATRIX BIOLOGY, 2003, 22 (02) :145-152
[57]   Visceral obesity and the risk of ischaemic heart disease: insights from the Quebec Cardiovascular Study [J].
Lamarche, B ;
Lemieux, S ;
Dagenais, GR ;
Despres, JP .
GROWTH HORMONE & IGF RESEARCH, 1998, 8 :1-8
[58]   Proangiogenic Contribution of Adiponectin toward Mammary Tumor Growth In vivo [J].
Landskroner-Eiger, Shira ;
Qian, Binzhi ;
Muise, Eric S. ;
Nawrocki, Andrea R. ;
Berger, Joel P. ;
Fine, Eugene J. ;
Koba, Wade ;
Deng, Yingfeng ;
Pollard, Jeffrey W. ;
Scherer, Philipp E. .
CLINICAL CANCER RESEARCH, 2009, 15 (10) :3265-3276
[59]   Effects of Aerobic Exercise Training on C1q Tumor Necrosis Factor α-Related Protein Isoform 5 (Myonectin): Association with Insulin Resistance and Mitochondrial DNA Density in Women [J].
Lim, Soo ;
Choi, Sung Hee ;
Koo, Bo Kyung ;
Kang, Seon Mee ;
Yoon, Ji Won ;
Jang, Hak Chul ;
Choi, Soon Mi ;
Lee, Man Gyoon ;
Lee, Wan ;
Shin, Hayley ;
Kim, Young-Bum ;
Lee, Hong Kyu ;
Park, Kyong Soo .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2012, 97 (01) :E88-E93
[60]   A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization [J].
Liu, Meilian ;
Zhou, Lijun ;
Xu, Aimin ;
Lam, Karen S. L. ;
Wetzel, Michael D. ;
Xiang, Ruihua ;
Zhang, Jingjing ;
Xin, Xiaoban ;
Dong, Lily Q. ;
Liu, Feng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (47) :18302-18307