Convolutional neural network assistance significantly improves dermatologists' diagnosis of cutaneous tumours using clinical images

被引:15
作者
Ba, Wei [1 ]
Wu, Huan [2 ]
Chen, Wei W. [3 ]
Wang, Shu H. [4 ]
Zhang, Zi Y. [5 ]
Wei, Xuan J. [1 ]
Wang, Wen J. [1 ]
Yang, Lei [6 ]
Zhou, Dong M. [3 ]
Zhuang, Yi X. [7 ]
Zhong, Qin [7 ]
Song, Zhi G. [8 ]
Li, Cheng X. [1 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Dermatol, Beijing 100853, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Res Med Big Data Ctr, Beijing 100853, Peoples R China
[3] Affiliated Capital Med Univ, Beijing Hosp Tradit Chinese Med, Dept Dermatol, Beijing 100010, Peoples R China
[4] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[5] North China Univ Sci & Technol, Affiliated Hosp, Dept Dermatol, Tangshan 063000, Peoples R China
[6] Rocket Force Characterist Med Ctr, Dept Dermatol, Beijing 100088, Peoples R China
[7] Med Sch Chinese PLA Gen Hosp, Beijing 100853, Peoples R China
[8] Chinese Peoples Liberat Army Gen Hosp, Dept Pathol, Beijing 100853, Peoples R China
关键词
Convolutional neural network; Clinical image; Cutaneous tumours; Multi-reader multi-case (MRMC) study; Fully crossed; BASAL-CELL CARCINOMA; SKIN-CANCER; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; MEDICINE; MELANOMA; GO;
D O I
10.1016/j.ejca.2022.04.015
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Convolutional neural networks (CNNs) have demonstrated expertlevel performance in cutaneous tumour classification using clinical images, but most previous studies have focused on dermatologist-versus-CNN comparisons rather than their combination. The objective of our study was to evaluate the potential impact of CNN assistance on dermatologists for clinical image interpretation.Methods: A multi-class CNN was trained and validated using a dataset of 25,773 clinical images comprising 10 categories of cutaneous tumours. The CNN's performance was tested on an independent dataset of 2107 images. A total of 400 images (40 per category) were randomly selected from the test dataset. A fully crossed, self-control, multi-reader multi-case (MRMC) study was conducted to compare the performance of 18 board-certified dermatologists
引用
收藏
页码:156 / 165
页数:10
相关论文
共 40 条
[1]  
[Anonymous], CLIN PERFORMANCE ASS
[2]   An unsupervised feature learning framework for basal cell carcinoma image analysis [J].
Arevalo, John ;
Cruz-Roa, Angel ;
Arias, Viviana ;
Romero, Eduardo ;
Gonzalez, Fabio A. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2015, 64 (02) :131-145
[3]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[4]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[5]  
Cesana BM, 2008, MINERVA ANESTESIOL, V74, P431
[6]   A guide to deep learning in healthcare [J].
Esteva, Andre ;
Robicquet, Alexandre ;
Ramsundar, Bharath ;
Kuleshov, Volodymyr ;
DePristo, Mark ;
Chou, Katherine ;
Cui, Claire ;
Corrado, Greg ;
Thrun, Sebastian ;
Dean, Jeff .
NATURE MEDICINE, 2019, 25 (01) :24-29
[7]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[8]  
Finlayson GD, 2004, 12TH COLOR IMAGING CONFERENCE: COLOR SCIENCE AND ENGINEERING SYSTEMS, TECHNOLOGIES, APPLICATIONS, P37
[9]   Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis [J].
Fujisawa, Y. ;
Otomo, Y. ;
Ogata, Y. ;
Nakamura, Y. ;
Fujita, R. ;
Ishitsuka, Y. ;
Watanabe, R. ;
Okiyama, N. ;
Ohara, K. ;
Fujimoto, M. .
BRITISH JOURNAL OF DERMATOLOGY, 2019, 180 (02) :373-381
[10]   Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists [J].
Haenssle, H. A. ;
Fink, C. ;
Schneiderbauer, R. ;
Toberer, F. ;
Buhl, T. ;
Blum, A. ;
Kalloo, A. ;
Hassens, A. Ben Hadj ;
Thomas, L. ;
Enk, A. ;
Uhlmann, L. .
ANNALS OF ONCOLOGY, 2018, 29 (08) :1836-1842