An efficient surrogate-assisted quasi-affine transformation evolutionary algorithm for expensive optimization problems

被引:61
|
作者
Liu, Nengxian [1 ]
Pan, Jeng-Shyang [1 ,2 ]
Sun, Chaoli [3 ]
Chu, Shu-Chuan [2 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao, Peoples R China
[3] Taiyuan Univ Sci & Technol, Dept Comp Sci & Technol, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Surrogate-assisted; QUATRE; Global surrogate; Local surrogate; Expensive problems; PARTICLE SWARM OPTIMIZATION; DIFFERENTIAL EVOLUTION; FITNESS APPROXIMATION; STRATEGY; MODEL;
D O I
10.1016/j.knosys.2020.106418
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many real-world engineering optimization problems usually need a lot of time for function evaluations or have massive decision variables. It is still a big challenge to address these problems effectively. Recently, surrogate-assisted meta-heuristic algorithms have drawn increasing attention, and have shown their potential to deal with such expensive complex optimization problems. In this study, a surrogate-assisted quasi-affine transformation evolutionary (SA-QUATRE) algorithm is proposed to further enhance the optimization efficiency and effectiveness. In SA-QUATRE, the global and the local surrogate models are effectively combined for fitness estimation. The global surrogate model is built based on all data in the database for global exploration. While, the local surrogate model is constructed with a predefined number of top best samples for local exploitation. Meanwhile, both the generation- and individual-based evolution controls as well as a top best restart strategy are incorporated in the global and the local searches. To enhance the exploration and the exploitation capabilities, the global search uses the mean of the population to be evaluated with the expensive real fitness function, while the local search chooses the individual with the best fitness according to the surrogate for real evaluation. The proposed SA-QUATRE is compared with five state-of-the-art optimization approaches over seven commonly used benchmark functions with dimensions varying from 10 to 100. Moreover, the proposed SA-QUATRE is also applied to solve the tension/compression spring design problem. The experimental results show that SA-QUATRE is promising for optimizing computationally expensive problems. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems
    Pan, Jeng-Shyang
    Liu, Nengxian
    Chu, Shu-Chuan
    Lai, Taotao
    INFORMATION SCIENCES, 2021, 561 : 304 - 325
  • [2] A surrogate-assisted evolutionary algorithm with knowledge transfer for expensive multimodal optimization problems
    Du, Wenhao
    Ren, Zhigang
    Wang, Jihong
    Chen, An
    INFORMATION SCIENCES, 2024, 652
  • [3] A review of surrogate-assisted evolutionary algorithms for expensive optimization problems
    He, Chunlin
    Zhang, Yong
    Gong, Dunwei
    Ji, Xinfang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
  • [4] Voronoi-based Efficient Surrogate-assisted Evolutionary Algorithm for Very Expensive Problems
    Tong, Hao
    Huang, Changwu
    Liu, Jialin
    Yao, Xin
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1996 - 2003
  • [5] A Surrogate-Assisted Evolutionary Algorithm for Seeking Multiple Solutions of Expensive Multimodal Optimization Problems
    Ji, Jing-Yu
    Tan, Zusheng
    Zeng, Sanyou
    See-To, Eric W. K.
    Wong, Man-Leung
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 377 - 388
  • [6] A Surrogate-Assisted Memetic Co-evolutionary Algorithm for Expensive Constrained Optimization Problems
    Goh, C. K.
    Lim, D.
    Ma, L.
    Ong, Y. S.
    Dutta, P. S.
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 744 - 749
  • [7] Efficient Generalized Surrogate-Assisted Evolutionary Algorithm for High-Dimensional Expensive Problems
    Cai, Xiwen
    Gao, Liang
    Li, Xinyu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 365 - 379
  • [8] A surrogate-assisted bi-swarm evolutionary algorithm for expensive optimization
    Liu, Nengxian
    Pan, Jeng-Shyang
    Chu, Shu-Chuan
    Lai, Taotao
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12448 - 12471
  • [9] A surrogate-assisted bi-swarm evolutionary algorithm for expensive optimization
    Nengxian Liu
    Jeng-Shyang Pan
    Shu-Chuan Chu
    Taotao Lai
    Applied Intelligence, 2023, 53 : 12448 - 12471
  • [10] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Yu, Mingyuan
    Li, Xia
    Liang, Jing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (02) : 711 - 729