Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection

被引:56
作者
Lapenta, Giovanni [1 ]
Goldman, Martin [2 ]
Newman, David [2 ]
Markidis, Stefano [3 ]
Divin, Andrey [4 ]
机构
[1] Univ Leuven, KU Leuven, Dept Wiskunde, Louvain, Belgium
[2] Univ Colorado, Boulder, CO 80309 USA
[3] KTH Royal Inst Technol, High Performance Comp & Visualizat HPCViz Dept, Stockholm, Sweden
[4] Swedish Inst Space Phys, Uppsala, Sweden
关键词
GENERATOR REGIONS; PLASMA; SIMULATIONS; CLUSTER;
D O I
10.1063/1.4872028
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The electromagnetic energy equation is analyzed term by term in a 3D simulation of kinetic reconnection previously reported by Vapirev et al. [J. Geophys. Res.: Space Phys. 118, 1435 (2013)]. The evolution presents the usual 2D-like topological structures caused by an initial perturbation independent of the third dimension. However, downstream of the reconnection site, where the jetting plasma encounters the yet unperturbed pre-existing plasma, a downstream front is formed and made unstable by the strong density gradient and the unfavorable local acceleration field. The energy exchange between plasma and fields is most intense at the instability, reaching several pW/m(3), alternating between load (energy going from fields to particles) and generator (energy going from particles to fields) regions. Energy exchange is instead purely that of a load at the reconnection site itself in a region focused around the x-line and elongated along the separatrix surfaces. Poynting fluxes are generated at all energy exchange regions and travel away from the reconnection site transporting an energy signal of the order of about S approximate to 10(-3)W/m(2). (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Plasma sheet electromagnetic power generation and its dissipation along auroral field lines [J].
Angelopoulos, V ;
Chapman, JA ;
Mozer, FS ;
Scudder, JD ;
Russell, CT ;
Tsuruda, K ;
Mukai, T ;
Hughes, TJ ;
Yumoto, K .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A8)
[2]   Energy release and conversion by reconnection in the magnetotail [J].
Birn, J ;
Hesse, M .
ANNALES GEOPHYSICAE, 2005, 23 (10) :3365-3373
[3]  
Birn J., 2007, Reconnection of magnetic fields: magnetohydrodynamics and collisionless theory and observations
[4]  
Biskamp D., 2000, Magnetic Reconnection in Plasmas
[5]   AN IMPLICIT METHOD FOR ELECTROMAGNETIC PLASMA SIMULATION IN 2 DIMENSIONS [J].
BRACKBILL, JU ;
FORSLUND, DW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 46 (02) :271-308
[6]  
Divin A., 2013, EGU GEN ASS C, V15, P8370
[7]   Energy Partition in Magnetic Reconnection in Earth's Magnetotail [J].
Eastwood, J. P. ;
Phan, T. D. ;
Drake, J. F. ;
Shay, M. A. ;
Borg, A. L. ;
Lavraud, B. ;
Taylor, M. G. G. T. .
PHYSICAL REVIEW LETTERS, 2013, 110 (22)
[8]   Jet Deflection by Very Weak Guide Fields during Magnetic Reconnection [J].
Goldman, M. V. ;
Lapenta, G. ;
Newman, D. L. ;
Markidis, S. ;
Che, H. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[9]   A simple MHD model for the formation of multiple dipolarization fronts [J].
Guzdar, P. N. ;
Hassam, A. B. ;
Swisdak, M. ;
Sitnov, M. I. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[10]   Observations of concentrated generator regions in the nightside magnetosphere by Cluster/FAST conjunctions [J].
Hamrin, M. ;
Marghitu, O. ;
Ronnmark, K. ;
Klecker, B. ;
Andre, M. ;
Buchert, S. ;
Kistler, L. M. ;
McFadden, J. ;
Reme, H. ;
Vaivads, A. .
ANNALES GEOPHYSICAE, 2006, 24 (02) :637-649