Interactive fuzzy connectedness image segmentation for neonatal brain MR image segmentation

被引:0
作者
Kobashi, Syoji [1 ]
Kuramoto, Kei [1 ]
Hata, Yutaka [1 ]
机构
[1] Univ Hyogo, Grad Sch Engn, Himeji Initiat Computat Med & Hlth Technol, Himeji, Hyogo 6712201, Japan
来源
2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013) | 2013年
关键词
interactive image segmentation; fuzzy connectedness image segmentation; radial-basis-function network; neonatal brain; magnetic resoance images; ALGORITHMS;
D O I
10.1109/SMC.2013.311
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Image segmentation plays a fundamental work to analyze medical images. Although many literatures studied automated image segmentation, it is still difficult to segment region-of-interest in any kind of images. Thus, manual delineation is important yet. In order to shorten the processing time and to decrease the effort of users, this paper introduces two approaches of interactive image segmentation method based on fuzzy connectedness image segmentation (FCIS). The first approach interactively updates object affinity of FCIS according to users' additional seed voxels. The second approach models the profile of the object affinity using radial-basis function network (RBFN), and applies online training for users' additional seed voxels. The proposed methods updates segmentation results for not only the seed voxels but also the other miss-classified voxels. The methods had been applied to neonatal brain magnetic resonance (MR) images. The experimental results showed the second approach produced the best results.
引用
收藏
页码:1799 / 1804
页数:6
相关论文
共 20 条
[1]   SEEDED REGION GROWING [J].
ADAMS, R ;
BISCHOF, L .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) :641-647
[2]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[3]   Automatic Lung Segmentation in CT Images with Accurate Handling of the Hilar Region [J].
De Nunzio, Giorgio ;
Tommasi, Eleonora ;
Agrusti, Antonella ;
Cataldo, Rosella ;
De Mitri, Ivan ;
Favetta, Marco ;
Maglio, Silvio ;
Massafra, Andrea ;
Quarta, Maurizio ;
Torsello, Massimo ;
Zecca, Ilaria ;
Bellotti, Roberto ;
Tangaro, Sabina ;
Calvini, Piero ;
Camarlinghi, Niccolo ;
Falaschi, Fabio ;
Cerello, Piergiorgio ;
Oliva, Piernicola .
JOURNAL OF DIGITAL IMAGING, 2011, 24 (01) :11-27
[4]   User-steered image segmentation paradigms: Live wire and live lane [J].
Falcao, AX ;
Udupa, JK ;
Samarasekera, S ;
Sharma, S ;
Hirsch, BE ;
Lotufo, RDA .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1998, 60 (04) :233-260
[5]  
Gersho A., 1992, Vector quantization and signal compression
[6]  
Hata Y, 2000, IEEE T SYST MAN CY C, V30, P381, DOI 10.1109/5326.885120
[7]  
Haykin S., 1999, Neural Networks: A Comprehensive Foundation, DOI DOI 10.1017/S0269888998214044
[8]   Frontotemporal dementia and Alzheimer disease: Evaluation of cortical atrophy with automated hemispheric surface display generated with MR images [J].
Kitagaki, H ;
Mori, E ;
Yamaji, S ;
Ishii, K ;
Hirono, N ;
Kobashi, S ;
Hata, Y .
RADIOLOGY, 1998, 208 (02) :431-439
[9]   Computer-aided diagnosis of intracranial aneurysms in MRA images with case-based reasoning [J].
Kobashi, S ;
Kondo, K ;
Hata, Y .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (01) :340-350
[10]   Volume-quantization-based neural network approach to 3D MR angiography image segmentation [J].
Kobashi, S ;
Kamiura, N ;
Hata, Y ;
Miyawaki, F .
IMAGE AND VISION COMPUTING, 2001, 19 (04) :185-193