PLIDA: cross-platform gene expression normalization using perturbed topic models

被引:14
作者
Deshwar, Amit G. [1 ]
Morris, Quaid [1 ,2 ,3 ,4 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 1A1, Canada
[2] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A1, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
[4] Univ Toronto, Terrence Donnelly Ctr Cellular & Biomol Res, Toronto, ON M5S 1A1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MICROARRAY DATA; BREAST-CANCER; VALIDATION; SIGNATURE;
D O I
10.1093/bioinformatics/btt574
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Gene expression data are currently collected on a wide range of platforms. Differences between platforms make it challenging to combine and compare data collected on different platforms. We propose a new method of cross-platform normalization that uses topic models to summarize the expression patterns in each dataset before normalizing the topics learned from each dataset using per-gene multiplicative weights. Results: This method allows for cross-platform normalization even when samples profiled on different platforms have systematic differences, allows the simultaneous normalization of data from an arbitrary number of platforms and, after suitable training, allows for online normalization of expression data collected individually or in small batches. In addition, our method outperforms existing state-of-the-art platform normalization tools.
引用
收藏
页码:956 / 961
页数:6
相关论文
共 24 条
[1]   Adjustment of systematic microarray data biases [J].
Benito, M ;
Parker, J ;
Du, Q ;
Wu, JY ;
Xang, D ;
Perou, CM ;
Marron, JS .
BIOINFORMATICS, 2004, 20 (01) :105-114
[2]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[3]   Statistical expression deconvolution from mixed tissue samples [J].
Clarke, Jennifer ;
Seo, Pearl ;
Clarke, Bertrand .
BIOINFORMATICS, 2010, 26 (08) :1043-1049
[4]   ROBUST LOCALLY WEIGHTED REGRESSION AND SMOOTHING SCATTERPLOTS [J].
CLEVELAND, WS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :829-836
[5]   Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data [J].
Dai, MH ;
Wang, PL ;
Boyd, AD ;
Kostov, G ;
Athey, B ;
Jones, EG ;
Bunney, WE ;
Myers, RM ;
Speed, TP ;
Akil, H ;
Watson, SJ ;
Meng, F .
NUCLEIC ACIDS RESEARCH, 2005, 33 (20) :e175.1-e175.9
[6]   Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series [J].
Desmedt, Christine ;
Piette, Fanny ;
Loi, Sherene ;
Wang, Yixin ;
d'assignies, Mahasti Saghatchian ;
Bergh, Jonas ;
Lidereau, Rosette ;
Ellis, Paul ;
Harris, Adrian L. ;
Klijn, Jan G. M. ;
Foekens, John A. ;
Cardoso, Fatima ;
Piccart, Martine J. ;
Buyse, Marc ;
Sotiriou, Christos .
CLINICAL CANCER RESEARCH, 2007, 13 (11) :3207-3214
[7]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[8]   Automated discovery of functional generality of human gene expression programs [J].
Gerber, Georg K. ;
Dowell, Robin D. ;
Jaakkola, Tommi S. ;
Gifford, David K. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (08) :1426-1440
[9]   Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks [J].
Gevaert, Olivier ;
De Smet, Frank ;
Timmerman, Dirk ;
Moreau, Yves ;
De Moor, Bart .
BIOINFORMATICS, 2006, 22 (14) :E184-E190
[10]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436