Impact of morphology on the oxygen evolution reaction of 3D hollow Cobalt-Molybdenum Nitride

被引:125
作者
Chu, Hongqi [1 ]
Zhang, Dan [1 ]
Jin, Bowen [1 ]
Yang, Min [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cobalt-Molybdenum Nitride; 3D hollow structure; Oxygen evolution reaction; ZIF-67; template; EXCELLENT BIFUNCTIONAL ELECTROCATALYSTS; IN-SITU FORMATION; N-DOPED CARBON; HYDROGEN EVOLUTION; NANOWIRE ARRAYS; EFFICIENT; CO; NANOTUBES; CATHODE;
D O I
10.1016/j.apcatb.2019.117744
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxygen evolution reaction (OER) is an essential process for water electrolysis and to realize the scalability of renewable energy sources. In this work, a strategy is developed to fabricate anisotropic metallic Cobalt-Molybdenum Nitride materials combining hollow 3D structures and 2D nanosheets which result highly active OER electrocatalysts. The sample structure and morphology is investigated to derive its formation process following the synthesis strategy relying on the ligand-metal interactions of metal-organic framework (ZIF-67 and Mo-aMOF). Three different sample morphologies with large specific surface areas are obtained by changing the water and 2-methylimidazole contents. After ammonification in NH3, the morphologies and the specific surface areas of the samples are preserved. The electronic structure can also be adjusted to regulate electron density of Co and Mo by N-doping. These Co-Mo binary metals offer a viable way for realizing the electronic transfer between the different components, as demonstrated by XPS. Taking advantage from the above features, the as-obtained electrocatalyst exhibits a high catalytic activity and long-term cyclic stability for OER with low overpotential (eta(10) is 294 mV).
引用
收藏
页数:8
相关论文
共 48 条
[1]  
[Anonymous], 2010, ANGEW CHEM
[2]  
[Anonymous], 2013, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ANGE.201301622
[3]   3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction [J].
Cai, Shichang ;
Meng, Zihan ;
Tang, Haolin ;
Wang, Yi ;
Tsiakaras, Panagiotis .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :477-484
[4]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[5]   Trapping [PMo12O40]3- clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting [J].
Chen, Congfang ;
Wu, Aiping ;
Yan, Haijing ;
Xiao, Yinglu ;
Tian, Chungui ;
Fu, Honggang .
CHEMICAL SCIENCE, 2018, 9 (21) :4746-4755
[6]   In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting [J].
Chen, Ziliang ;
Ha, Yuan ;
Liu, Yang ;
Wang, Hao ;
Yang, Hongyuan ;
Xu, Hongbin ;
Li, Yanjun ;
Wu, Renbing .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) :7134-7144
[7]   Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions [J].
Fang, Ming ;
Gao, Wei ;
Dong, Guofa ;
Xia, Zhaoming ;
Yip, SenPo ;
Qin, Yuanbin ;
Qu, Yongquan ;
Ho, Johnny C. .
NANO ENERGY, 2016, 27 :247-254
[8]   Atomic cobalt on nitrogen-doped graphene for hydrogen generation [J].
Fei, Huilong ;
Dong, Juncai ;
Arellano-Jimenez, M. Josefina ;
Ye, Gonglan ;
Kim, Nam Dong ;
Samuel, Errol L. G. ;
Peng, Zhiwei ;
Zhu, Zhuan ;
Qin, Fan ;
Bao, Jiming ;
Yacaman, Miguel Jose ;
Ajayan, Pulickel M. ;
Chen, Dongliang ;
Tour, James M. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte [J].
Fu, Shaofang ;
Song, Junhua ;
Zhu, Chengzhou ;
Xu, Gui-Liang ;
Amine, Khalil ;
Sun, Chengjun ;
Li, Xiaolin ;
Engelhard, Mark H. ;
Du, Dan ;
Lin, Yuehe .
NANO ENERGY, 2018, 44 :319-326
[10]   High oxygen-reduction activity and durability of nitrogen-doped graphene [J].
Geng, Dongsheng ;
Chen, Ying ;
Chen, Yougui ;
Li, Yongliang ;
Li, Ruying ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :760-764