An Efficient Hierarchy-Based of K-Means Clustering Algorithm

被引:0
作者
Li Yong-peng [1 ]
Zhang Bo-tao [1 ]
Zhang Shuai-qin [1 ]
机构
[1] Informat Engn Univ, Inst Sci, Zhengzhou 450001, Peoples R China
来源
2008 INTERNATIONAL WORKSHOP ON INFORMATION TECHNOLOGY AND SECURITY | 2008年
关键词
clustering; cost function; hierarch; K-means clustering;
D O I
10.1109/AINA.2008.21
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An efficient hierarchy-based of K-means clustering arithmetic is presented. Grounded on statistical mechanics, the partition matrix element (membership probability) on the basis of the traditional of K-means clustering is changed formally and a Lagrange multiplier controlling the clusters number is introduced. In this way, for a given dataset, the result will get different clusters number when the Lagrange multiplier is not the same. The method is tested on a synthetic data set. The result demonstrates hierarchy feature and more satisfied with the accuracy of the cluster, and more efficient to initialize the cluster centers.
引用
收藏
页码:106 / 110
页数:5
相关论文
共 9 条
  • [1] Aitnouri E., 2002, Pattern Recognition and Image Analysis, V12, P331
  • [2] [Anonymous], 2003, PATTERN CLASSIFICATI
  • [4] Fukuyama Y., 1989, P 5 FUZZ SYST S, V5, P247
  • [5] Han J, 2001, DATAMINING CONCEPTS
  • [6] Cluster center initialization algorithm for K-means clustering
    Khan, SS
    Ahmad, A
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (11) : 1293 - 1302
  • [7] An empirical comparison of four initialization methods for the K-Means algorithm
    Peña, JM
    Lozano, JA
    Larrañaga, P
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (10) : 1027 - 1040
  • [8] FCM-based model selection algorithms for determining the number of clusters
    Sun, HJ
    Wang, SR
    Jiang, QS
    [J]. PATTERN RECOGNITION, 2004, 37 (10) : 2027 - 2037
  • [9] Unsupervised fuzzy clustering
    Zahid, N
    Abouelala, O
    Limouri, M
    Essaid, A
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (02) : 123 - 129