A generalized piezoelectric Bernoulli-Navier anisotropic rod model

被引:12
作者
Figueiredo, Isabel M. Narra [1 ]
Leal, Carlos M. Franco [1 ]
机构
[1] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
关键词
asymptotic analysis; anisotropic material; piezoelectricity; rod;
D O I
10.1007/s10659-006-9072-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply the asymptotic analysis procedure to the three-dimensional static equations of piezoelectricity, for a linear nonhomogeneous anisotropic thin rod. We prove the weak convergence of the rod mechanical displacement vectors and the rod electric potentials, when the diameter of the rod cross-section tends to zero. This weak limit is the solution of a new piezoelectric anisotropic nonhomogeneous rod model, which is a system of coupled equations, with generalized Bernoulli-Navier equilibrium equations and reduced Maxwell-Gauss equations.
引用
收藏
页码:85 / 106
页数:22
相关论文
共 14 条
[1]  
[Anonymous], 1996, FUNDAMENTALS PIEZOEL
[2]  
[Anonymous], 1996, Handbook of Numerical Analysis, Volume 4: Finite Element Methods (Part 2)-Numerical Methods for Solids (Part 2)
[3]  
[Anonymous], 1997, STUD MATH APPL
[4]   Modelization and numerical approximation of piezoelectric thin shells - Part I: The continuous problems [J].
Bernadou, M ;
Haenel, C .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (37-38) :4003-4043
[5]  
Collard C, 2002, ASYMPTOTIC ANAL, V31, P113
[6]  
Eringen A. C., 1990, ELECTRODYNAMICS CONT
[7]  
Figueiredo IMN, 2005, ASYMPTOTIC ANAL, V44, P327
[8]  
Girault V., 1979, LECT NOTES MATH, V749
[9]  
Green A.E., 1968, Theoretical Elasticity
[10]   AN ASYMPTOTIC THEORY OF THIN PIEZOELECTRIC PLATES [J].
MAUGIN, GA ;
ATTOU, D .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1990, 43 :347-362