The generalized Henon maps: Examples for higher-dimensional chaos

被引:71
|
作者
Richter, H [1 ]
机构
[1] Fraunhofer Inst Producktionstech & Automatisierun, D-70569 Stuttgart, Germany
来源
关键词
higher-dimensional chaos; generalized Henon maps; hyperchaos;
D O I
10.1142/S0218127402005121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Henon maps (GHM) are discrete-time systems with given finite dimension, which show chaotic and hyperchaotic behavior for certain parameter values and initial conditions. A study of these maps is given where particularly higher-dimensional cases are considered.
引用
收藏
页码:1371 / 1384
页数:14
相关论文
共 50 条
  • [1] Recent Results on the Dynamics of Higher-dimensional Henon Maps
    Anastassiou, Stavros
    Bountis, Anastasios
    Backer, Arnd
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (02): : 161 - 177
  • [2] A class of higher-dimensional hyperchaotic maps
    Chen Chen
    Kehui Sun
    Shaobo He
    The European Physical Journal Plus, 134
  • [3] A class of higher-dimensional hyperchaotic maps
    Chen, Chen
    Sun, Kehui
    He, Shaobo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (08):
  • [4] SOME EXAMPLES OF HIGHER-DIMENSIONAL RIGID CONTINUA
    Krzempek, Jerzy
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (02): : 485 - 500
  • [5] Bifurcations and chaos in a three-dimensional generalized Henon map
    Zheng, Jingjing
    Wang, Ziwei
    Li, You
    Wang, Jinliang
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [6] Semiclassical Measures for Higher-Dimensional Quantum Cat Maps
    Dyatlov, Semyon
    Jezequel, Malo
    ANNALES HENRI POINCARE, 2024, 25 (02): : 1545 - 1605
  • [7] Semiclassical Measures for Higher-Dimensional Quantum Cat Maps
    Semyon Dyatlov
    Malo Jézéquel
    Annales Henri Poincaré, 2024, 25 : 1545 - 1605
  • [8] Two-dimensional maps at the edge of chaos: Numerical results for the Henon map
    Tirnakli, U
    PHYSICAL REVIEW E, 2002, 66 (06): : 4 - 066212
  • [10] OCCURRENCE OF CHAOS IN HIGHER-DIMENSIONAL DISCRETE-TIME-SYSTEMS
    DOHTANI, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (06) : 1707 - 1721